{"title":"函数域上的整数值多项式","authors":"F.J. van der Linden","doi":"10.1016/S1385-7258(88)80009-X","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>A</em> be an integrally closed subring of a function field <em>K</em> defined over a finite field. In this paper we investigate whether the subring of <em>K[X]</em>, consisting of those polynomials ƒ with ƒ[<em>A</em>]⊂<em>A</em>, has an <em>A</em>-basis {g<sub>i</sub>: i ∈ ℤZ<sub>≥0</sub>}, with deg (<em>g<sub>i</sub>) = i</em>.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 3","pages":"Pages 293-308"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80009-X","citationCount":"5","resultStr":"{\"title\":\"Integer valued polynomials over function fields\",\"authors\":\"F.J. van der Linden\",\"doi\":\"10.1016/S1385-7258(88)80009-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>A</em> be an integrally closed subring of a function field <em>K</em> defined over a finite field. In this paper we investigate whether the subring of <em>K[X]</em>, consisting of those polynomials ƒ with ƒ[<em>A</em>]⊂<em>A</em>, has an <em>A</em>-basis {g<sub>i</sub>: i ∈ ℤZ<sub>≥0</sub>}, with deg (<em>g<sub>i</sub>) = i</em>.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"91 3\",\"pages\":\"Pages 293-308\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80009-X\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138572588880009X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138572588880009X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let A be an integrally closed subring of a function field K defined over a finite field. In this paper we investigate whether the subring of K[X], consisting of those polynomials ƒ with ƒ[A]⊂A, has an A-basis {gi: i ∈ ℤZ≥0}, with deg (gi) = i.