函数域上的整数值多项式

F.J. van der Linden
{"title":"函数域上的整数值多项式","authors":"F.J. van der Linden","doi":"10.1016/S1385-7258(88)80009-X","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>A</em> be an integrally closed subring of a function field <em>K</em> defined over a finite field. In this paper we investigate whether the subring of <em>K[X]</em>, consisting of those polynomials ƒ with ƒ[<em>A</em>]⊂<em>A</em>, has an <em>A</em>-basis {g<sub>i</sub>: i ∈ ℤZ<sub>≥0</sub>}, with deg (<em>g<sub>i</sub>) = i</em>.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 3","pages":"Pages 293-308"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80009-X","citationCount":"5","resultStr":"{\"title\":\"Integer valued polynomials over function fields\",\"authors\":\"F.J. van der Linden\",\"doi\":\"10.1016/S1385-7258(88)80009-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>A</em> be an integrally closed subring of a function field <em>K</em> defined over a finite field. In this paper we investigate whether the subring of <em>K[X]</em>, consisting of those polynomials ƒ with ƒ[<em>A</em>]⊂<em>A</em>, has an <em>A</em>-basis {g<sub>i</sub>: i ∈ ℤZ<sub>≥0</sub>}, with deg (<em>g<sub>i</sub>) = i</em>.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"91 3\",\"pages\":\"Pages 293-308\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80009-X\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138572588880009X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138572588880009X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

设A是定义在有限域上的函数域K的积分闭子。本文研究了由多项式φ与φ [A]∧A组成的K[X]的子矩阵是否存在一组A基{gi: i∈Z≥0},且deg (gi) = i。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integer valued polynomials over function fields

Let A be an integrally closed subring of a function field K defined over a finite field. In this paper we investigate whether the subring of K[X], consisting of those polynomials ƒ with ƒ[A]⊂A, has an A-basis {gi: i ∈ ℤZ≥0}, with deg (gi) = i.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信