通过相关分析选择非常规输入变量,利用人工神经网络进行电池荷电状态估计

Chenghui Cai, Dong-Du, Zhiyu Liu, Hua Zhang
{"title":"通过相关分析选择非常规输入变量,利用人工神经网络进行电池荷电状态估计","authors":"Chenghui Cai, Dong-Du, Zhiyu Liu, Hua Zhang","doi":"10.1109/ICMLC.2002.1167485","DOIUrl":null,"url":null,"abstract":"The selection of input variables is important to improve the prediction accuracy of artificial neural networks (ANNs). A three-layer feedforward backpropagation ANN is presented to estimate and predict the battery state-of-charge with nonconventional input variables selected. Initially, a few candidate input variables are derived from three basic input variables: discharging current, discharging time and battery terminal voltage. Then, three techniques of correlation analysis - the linear correlation analysis, nonparametric correlation analysis and partial correlation analysis - are used to select the input variables, and the results obtained are compared. With several nonconventional input variables included in the input sets, high prediction accuracy of the ANN model is obtained.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"1 1","pages":"1619-1625 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Artificial neural network in estimation of battery state of-charge (SOC) with nonconventional input variables selected by correlation analysis\",\"authors\":\"Chenghui Cai, Dong-Du, Zhiyu Liu, Hua Zhang\",\"doi\":\"10.1109/ICMLC.2002.1167485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The selection of input variables is important to improve the prediction accuracy of artificial neural networks (ANNs). A three-layer feedforward backpropagation ANN is presented to estimate and predict the battery state-of-charge with nonconventional input variables selected. Initially, a few candidate input variables are derived from three basic input variables: discharging current, discharging time and battery terminal voltage. Then, three techniques of correlation analysis - the linear correlation analysis, nonparametric correlation analysis and partial correlation analysis - are used to select the input variables, and the results obtained are compared. With several nonconventional input variables included in the input sets, high prediction accuracy of the ANN model is obtained.\",\"PeriodicalId\":90702,\"journal\":{\"name\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"volume\":\"1 1\",\"pages\":\"1619-1625 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2002.1167485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1167485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

输入变量的选择对提高人工神经网络的预测精度至关重要。提出了一种三层前馈反向传播神经网络,用于在选择非常规输入变量的情况下对电池电量状态进行估计和预测。最初,从三个基本输入变量:放电电流、放电时间和电池端电压中推导出几个候选输入变量。然后,利用线性相关分析、非参数相关分析和偏相关分析三种相关分析技术选择输入变量,并对得到的结果进行比较。在输入集中加入多个非常规输入变量,获得了较高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural network in estimation of battery state of-charge (SOC) with nonconventional input variables selected by correlation analysis
The selection of input variables is important to improve the prediction accuracy of artificial neural networks (ANNs). A three-layer feedforward backpropagation ANN is presented to estimate and predict the battery state-of-charge with nonconventional input variables selected. Initially, a few candidate input variables are derived from three basic input variables: discharging current, discharging time and battery terminal voltage. Then, three techniques of correlation analysis - the linear correlation analysis, nonparametric correlation analysis and partial correlation analysis - are used to select the input variables, and the results obtained are compared. With several nonconventional input variables included in the input sets, high prediction accuracy of the ANN model is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信