Kun Peng, Xinyang Cui, A. Qiao, M. Ohta, K. Shimoyama, Y. Mu
{"title":"基于降解模型的新型可生物降解锌合金支架力学分析","authors":"Kun Peng, Xinyang Cui, A. Qiao, M. Ohta, K. Shimoyama, Y. Mu","doi":"10.32604/mcb.2019.05729","DOIUrl":null,"url":null,"abstract":"Biodegradable stents which can avoid risks caused by incompatibility between artery and permanent stents are attracting much interests. However, biodegradable stents have not been extensively applied in clinical therapy because of their insufficient scaffold performance as a result of poor Young’s Modulus of biodegradable materials and weaken structures in degradation process. In this study, a patented stent and a common stent were simulated to degrade in a 40% stenotic vesel based on a corrosion model involving uniform corrosion and stress corrosion. In the degradation process, the scaffold performance of the two stents and their functionality on reshaping diseased vessels are analyzed. The results showed that radial recoiling ratio and mass loss ratio of the common stent is 22.6% and 14.1%, respectively. In comparison, radial recoiling ratio and mass loss ratio of the common stent are definitely lower than those of the common stent, at the value of 7.19% and 3.1%. It is indicated that the patented stent still has a stronger scaffold performance compared with the common stent. Besides, with positive influence of the patented stent on stenotic vessel, a larger and flatter lumen was observed in the plaque deployed with the patented stent. It implies that mechanical performance of biodegradable stents and their functionality highly depend on their geometries. Owing to improved mechanical performance induced by structural innovation, the novel biodegradable zinc alloy stent is promised to be an alternative choice in intervention surgeries.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Analysis of a Novel Biodegradable Zinc Alloy Stent Based on Degradation Model\",\"authors\":\"Kun Peng, Xinyang Cui, A. Qiao, M. Ohta, K. Shimoyama, Y. Mu\",\"doi\":\"10.32604/mcb.2019.05729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biodegradable stents which can avoid risks caused by incompatibility between artery and permanent stents are attracting much interests. However, biodegradable stents have not been extensively applied in clinical therapy because of their insufficient scaffold performance as a result of poor Young’s Modulus of biodegradable materials and weaken structures in degradation process. In this study, a patented stent and a common stent were simulated to degrade in a 40% stenotic vesel based on a corrosion model involving uniform corrosion and stress corrosion. In the degradation process, the scaffold performance of the two stents and their functionality on reshaping diseased vessels are analyzed. The results showed that radial recoiling ratio and mass loss ratio of the common stent is 22.6% and 14.1%, respectively. In comparison, radial recoiling ratio and mass loss ratio of the common stent are definitely lower than those of the common stent, at the value of 7.19% and 3.1%. It is indicated that the patented stent still has a stronger scaffold performance compared with the common stent. Besides, with positive influence of the patented stent on stenotic vessel, a larger and flatter lumen was observed in the plaque deployed with the patented stent. It implies that mechanical performance of biodegradable stents and their functionality highly depend on their geometries. Owing to improved mechanical performance induced by structural innovation, the novel biodegradable zinc alloy stent is promised to be an alternative choice in intervention surgeries.\",\"PeriodicalId\":48719,\"journal\":{\"name\":\"Molecular & Cellular Biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Biomechanics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.32604/mcb.2019.05729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/mcb.2019.05729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Mechanical Analysis of a Novel Biodegradable Zinc Alloy Stent Based on Degradation Model
Biodegradable stents which can avoid risks caused by incompatibility between artery and permanent stents are attracting much interests. However, biodegradable stents have not been extensively applied in clinical therapy because of their insufficient scaffold performance as a result of poor Young’s Modulus of biodegradable materials and weaken structures in degradation process. In this study, a patented stent and a common stent were simulated to degrade in a 40% stenotic vesel based on a corrosion model involving uniform corrosion and stress corrosion. In the degradation process, the scaffold performance of the two stents and their functionality on reshaping diseased vessels are analyzed. The results showed that radial recoiling ratio and mass loss ratio of the common stent is 22.6% and 14.1%, respectively. In comparison, radial recoiling ratio and mass loss ratio of the common stent are definitely lower than those of the common stent, at the value of 7.19% and 3.1%. It is indicated that the patented stent still has a stronger scaffold performance compared with the common stent. Besides, with positive influence of the patented stent on stenotic vessel, a larger and flatter lumen was observed in the plaque deployed with the patented stent. It implies that mechanical performance of biodegradable stents and their functionality highly depend on their geometries. Owing to improved mechanical performance induced by structural innovation, the novel biodegradable zinc alloy stent is promised to be an alternative choice in intervention surgeries.
期刊介绍:
The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.