太阳风静电势的解析解

IF 27.8 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
P. O. Alcalaya, I. Zouganelis, J. Pacheco
{"title":"太阳风静电势的解析解","authors":"P. O. Alcalaya, I. Zouganelis, J. Pacheco","doi":"10.1051/0004-6361/202040047","DOIUrl":null,"url":null,"abstract":"Context. Some kinetic models of the solar wind, such as the exospheric ones, make certain assumptions about the solar plasma, which for modelling purposes is generally considered collisionless and quasi-neutral. They also assume specific distribution functions for the electron and proton populations from which the fundamental properties of the plasma, including the density, are calculated using the moment integrals. Imposing the quasi-neutrality condition leads to the presence of an ambipolar electrostatic field, which is responsible for the acceleration of the wind. Usually, the calculation of the moment integrals is complicated by the fact that most kinetic models assume di ff erent trajectories for the solar wind components, separating the integrals into chunks corresponding to the pitch angles defining the trajectories. Hence, up to now all these integrals and therefore the plasma fundamental quantities have been calculated numerically. Aims. A new model is presented that makes use of similar assumptions to other kinetic collisionless models but does not need to impose the separation of the populations in di ff erent trajectories for the calculation of the integrals. As a consequence, an analytic solution for the electrostatic potential of the solar wind valid for all distances is found. Methods. A kinetic collisionless approach was used to characterise the solar wind plasma. A single equation for the electrostatic potential function was found assuming certain distribution functions (Maxwellian or non-thermal such as Kappa), which include an unknown electrostatic potential, calculating the density integral for those distribution functions and making those densities equal for electrons and protons. Results. An analytic solution for the electrostatic potential as a function of radial distance is found (for the first time for all distances) and shown to produce a non-monotonic total potential, which is compatible with other models like the exospheric ones whose electrostatic potential drives the acceleration of the solar wind. This expression can now be used, in a straightforward way, to provide insight into the importance of the electron distribution functions to shape the electrostatic potential of thermal solar-like outflows.","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"30 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic solution for the electrostatic potential of the solar wind\",\"authors\":\"P. O. Alcalaya, I. Zouganelis, J. Pacheco\",\"doi\":\"10.1051/0004-6361/202040047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context. Some kinetic models of the solar wind, such as the exospheric ones, make certain assumptions about the solar plasma, which for modelling purposes is generally considered collisionless and quasi-neutral. They also assume specific distribution functions for the electron and proton populations from which the fundamental properties of the plasma, including the density, are calculated using the moment integrals. Imposing the quasi-neutrality condition leads to the presence of an ambipolar electrostatic field, which is responsible for the acceleration of the wind. Usually, the calculation of the moment integrals is complicated by the fact that most kinetic models assume di ff erent trajectories for the solar wind components, separating the integrals into chunks corresponding to the pitch angles defining the trajectories. Hence, up to now all these integrals and therefore the plasma fundamental quantities have been calculated numerically. Aims. A new model is presented that makes use of similar assumptions to other kinetic collisionless models but does not need to impose the separation of the populations in di ff erent trajectories for the calculation of the integrals. As a consequence, an analytic solution for the electrostatic potential of the solar wind valid for all distances is found. Methods. A kinetic collisionless approach was used to characterise the solar wind plasma. A single equation for the electrostatic potential function was found assuming certain distribution functions (Maxwellian or non-thermal such as Kappa), which include an unknown electrostatic potential, calculating the density integral for those distribution functions and making those densities equal for electrons and protons. Results. An analytic solution for the electrostatic potential as a function of radial distance is found (for the first time for all distances) and shown to produce a non-monotonic total potential, which is compatible with other models like the exospheric ones whose electrostatic potential drives the acceleration of the solar wind. This expression can now be used, in a straightforward way, to provide insight into the importance of the electron distribution functions to shape the electrostatic potential of thermal solar-like outflows.\",\"PeriodicalId\":785,\"journal\":{\"name\":\"The Astronomy and Astrophysics Review\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":27.8000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astronomy and Astrophysics Review\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202040047\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/0004-6361/202040047","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

上下文。一些太阳风的动力学模型,如外逸层模型,对太阳等离子体做出了一定的假设,为了建模的目的,通常认为太阳等离子体是无碰撞的和准中性的。他们还假设了电子和质子居群的特定分布函数,等离子体的基本性质,包括密度,是用矩积分计算出来的。施加准中性条件会导致双极性静电场的存在,这是导致风加速的原因。通常,力矩积分的计算是复杂的,因为大多数动力学模型假设太阳风组件的不同轨迹,将积分分成与定义轨迹的俯仰角相对应的块。因此,到目前为止,所有这些积分和等离子体的基本量都是用数值计算出来的。目标提出了一种新的模型,它使用了与其他动力学无碰撞模型相似的假设,但不需要强加不同轨迹上的种群分离来计算积分。结果,找到了对所有距离有效的太阳风静电势的解析解。方法。一种动力学无碰撞方法被用来描述太阳风等离子体。静电势函数的单一方程被发现,假设某些分布函数(麦克斯韦或非热如Kappa),其中包括一个未知的静电势,计算这些分布函数的密度积分,并使电子和质子的密度相等。结果。发现了静电势作为径向距离函数的解析解(首次适用于所有距离),并证明产生了非单调的总势,这与其他模型兼容,如外逸层模型,其静电势驱动太阳风的加速度。这个表达式现在可以用一种直接的方式来深入了解电子分布函数对形成热太阳流出物的静电势的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic solution for the electrostatic potential of the solar wind
Context. Some kinetic models of the solar wind, such as the exospheric ones, make certain assumptions about the solar plasma, which for modelling purposes is generally considered collisionless and quasi-neutral. They also assume specific distribution functions for the electron and proton populations from which the fundamental properties of the plasma, including the density, are calculated using the moment integrals. Imposing the quasi-neutrality condition leads to the presence of an ambipolar electrostatic field, which is responsible for the acceleration of the wind. Usually, the calculation of the moment integrals is complicated by the fact that most kinetic models assume di ff erent trajectories for the solar wind components, separating the integrals into chunks corresponding to the pitch angles defining the trajectories. Hence, up to now all these integrals and therefore the plasma fundamental quantities have been calculated numerically. Aims. A new model is presented that makes use of similar assumptions to other kinetic collisionless models but does not need to impose the separation of the populations in di ff erent trajectories for the calculation of the integrals. As a consequence, an analytic solution for the electrostatic potential of the solar wind valid for all distances is found. Methods. A kinetic collisionless approach was used to characterise the solar wind plasma. A single equation for the electrostatic potential function was found assuming certain distribution functions (Maxwellian or non-thermal such as Kappa), which include an unknown electrostatic potential, calculating the density integral for those distribution functions and making those densities equal for electrons and protons. Results. An analytic solution for the electrostatic potential as a function of radial distance is found (for the first time for all distances) and shown to produce a non-monotonic total potential, which is compatible with other models like the exospheric ones whose electrostatic potential drives the acceleration of the solar wind. This expression can now be used, in a straightforward way, to provide insight into the importance of the electron distribution functions to shape the electrostatic potential of thermal solar-like outflows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Astronomy and Astrophysics Review
The Astronomy and Astrophysics Review 地学天文-天文与天体物理
CiteScore
45.00
自引率
0.80%
发文量
7
期刊介绍: The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信