带限奈奎斯特脉冲的参数化

K. Ochs
{"title":"带限奈奎斯特脉冲的参数化","authors":"K. Ochs","doi":"10.1109/SIPS.2007.4387590","DOIUrl":null,"url":null,"abstract":"A novel parameterization of band-limited Nyquist pulses is presented, which allows for an elegant classification of such pulses. Besides this, the new parametric representation is used for a deterministic sensitivity analysis of a communication system with almost no inter-symbol interference in the presence of timing jitters. A treatment as a periodically linear time-variant system results in a frequency domain based formulation of Nyquist condition, being advantageously applicable to pulse shaping filters with finite impulse response.","PeriodicalId":93225,"journal":{"name":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","volume":"64 1","pages":"452-456"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Parameterization of Band-Limited Nyquist Pulses\",\"authors\":\"K. Ochs\",\"doi\":\"10.1109/SIPS.2007.4387590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel parameterization of band-limited Nyquist pulses is presented, which allows for an elegant classification of such pulses. Besides this, the new parametric representation is used for a deterministic sensitivity analysis of a communication system with almost no inter-symbol interference in the presence of timing jitters. A treatment as a periodically linear time-variant system results in a frequency domain based formulation of Nyquist condition, being advantageously applicable to pulse shaping filters with finite impulse response.\",\"PeriodicalId\":93225,\"journal\":{\"name\":\"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)\",\"volume\":\"64 1\",\"pages\":\"452-456\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPS.2007.4387590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2007.4387590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的带限奈奎斯特脉冲参数化方法,使得该类脉冲的分类更加简便。此外,将新的参数表示用于存在时序抖动时几乎没有符号间干扰的通信系统的确定性灵敏度分析。作为周期性线性时变系统的处理结果是基于频域的奈奎斯特条件公式,有利于应用于脉冲响应有限的脉冲整形滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Parameterization of Band-Limited Nyquist Pulses
A novel parameterization of band-limited Nyquist pulses is presented, which allows for an elegant classification of such pulses. Besides this, the new parametric representation is used for a deterministic sensitivity analysis of a communication system with almost no inter-symbol interference in the presence of timing jitters. A treatment as a periodically linear time-variant system results in a frequency domain based formulation of Nyquist condition, being advantageously applicable to pulse shaping filters with finite impulse response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信