{"title":"使用相干光子的按需量子相关控制","authors":"B. Ham","doi":"10.21203/rs.3.rs-125563/v1","DOIUrl":null,"url":null,"abstract":"\n Over the last several decades, quantum entanglement has been intensively studied for potential applications in quantum information science. Although intensive studies have progressed for nonlocal correlation, fundamental understanding of entanglement itself is still limited. Here, the quantum feature of anticorrelation, the so-called HOM dip, based on probabilistic entangled photon pairs is analyzed for its fundamental physics and compared with a new method of on-demand entangled photon pair generations using coherent light. The fundamental physics why there is no correlation in HOM dip measurements is answered, and new coherence quantum physics is proposed for macroscopic quantum entanglement generations.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On-demand quantum correlation control using coherent photons\",\"authors\":\"B. Ham\",\"doi\":\"10.21203/rs.3.rs-125563/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Over the last several decades, quantum entanglement has been intensively studied for potential applications in quantum information science. Although intensive studies have progressed for nonlocal correlation, fundamental understanding of entanglement itself is still limited. Here, the quantum feature of anticorrelation, the so-called HOM dip, based on probabilistic entangled photon pairs is analyzed for its fundamental physics and compared with a new method of on-demand entangled photon pair generations using coherent light. The fundamental physics why there is no correlation in HOM dip measurements is answered, and new coherence quantum physics is proposed for macroscopic quantum entanglement generations.\",\"PeriodicalId\":8484,\"journal\":{\"name\":\"arXiv: Quantum Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-125563/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-125563/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-demand quantum correlation control using coherent photons
Over the last several decades, quantum entanglement has been intensively studied for potential applications in quantum information science. Although intensive studies have progressed for nonlocal correlation, fundamental understanding of entanglement itself is still limited. Here, the quantum feature of anticorrelation, the so-called HOM dip, based on probabilistic entangled photon pairs is analyzed for its fundamental physics and compared with a new method of on-demand entangled photon pair generations using coherent light. The fundamental physics why there is no correlation in HOM dip measurements is answered, and new coherence quantum physics is proposed for macroscopic quantum entanglement generations.