谐波信号恢复的自适应外推算法分析

A. E. Brito, S. Cabrera
{"title":"谐波信号恢复的自适应外推算法分析","authors":"A. E. Brito, S. Cabrera","doi":"10.1109/ACSSC.2000.910951","DOIUrl":null,"url":null,"abstract":"The adaptive weighted norm extrapolation (AWNE) method is well suited for recovering sinusoidal signals from short data records since they have well concentrated spectral representations. This paper analyzes the performance of the algorithm in the recovery of sinusoidal signals; validates the assumption that the result of the algorithm is a windowed version of the original; and derives a form for this imposed window. The role of the autocorrelation of the window used in the AWNE algorithm plays a key role in our analysis. We also provide a new interpretation of the AWNE method as a best subspace selection method for signal approximation.","PeriodicalId":10581,"journal":{"name":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","volume":"15 1","pages":"233-237 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis of an adaptive extrapolation algorithm on the recovery of harmonic signals\",\"authors\":\"A. E. Brito, S. Cabrera\",\"doi\":\"10.1109/ACSSC.2000.910951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adaptive weighted norm extrapolation (AWNE) method is well suited for recovering sinusoidal signals from short data records since they have well concentrated spectral representations. This paper analyzes the performance of the algorithm in the recovery of sinusoidal signals; validates the assumption that the result of the algorithm is a windowed version of the original; and derives a form for this imposed window. The role of the autocorrelation of the window used in the AWNE algorithm plays a key role in our analysis. We also provide a new interpretation of the AWNE method as a best subspace selection method for signal approximation.\",\"PeriodicalId\":10581,\"journal\":{\"name\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"volume\":\"15 1\",\"pages\":\"233-237 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2000.910951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2000.910951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

自适应加权范数外推(AWNE)方法非常适合从短数据记录中恢复正弦信号,因为它们具有很好的集中的频谱表示。分析了该算法在正弦信号恢复中的性能;验证算法的结果是原始结果的窗口版本的假设;并为这个强加的窗口推导出一个形式。AWNE算法中使用的窗口的自相关作用在我们的分析中起着关键作用。我们还提供了AWNE方法作为信号逼近的最佳子空间选择方法的新解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of an adaptive extrapolation algorithm on the recovery of harmonic signals
The adaptive weighted norm extrapolation (AWNE) method is well suited for recovering sinusoidal signals from short data records since they have well concentrated spectral representations. This paper analyzes the performance of the algorithm in the recovery of sinusoidal signals; validates the assumption that the result of the algorithm is a windowed version of the original; and derives a form for this imposed window. The role of the autocorrelation of the window used in the AWNE algorithm plays a key role in our analysis. We also provide a new interpretation of the AWNE method as a best subspace selection method for signal approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信