S. Nakaya, M. Miyamura, N. Sakimura, Yuichi Nakamura, T. Sugibayashi
{"title":"一种用于无线传感器节点的非易失性可重构卸载器","authors":"S. Nakaya, M. Miyamura, N. Sakimura, Yuichi Nakamura, T. Sugibayashi","doi":"10.1145/2460216.2460232","DOIUrl":null,"url":null,"abstract":"Energy saving is currently one of the most important issues in the development of battery-powered wireless sensor nodes (WSNs). We have developed a non-volatile reconfigurable offioader for flexible and highly efficient processing on WSNs that uses NanoBridges (NBs), which are novel non-volatile and reprogrammable switching elements. Non-volatility is essential for the intermittent operation of WSNs due to the requirement of power-on without loading configuration data. We implemented a data compression algorithm on the offioader that reduces energy consumption during data transmission. Simulation results showed that the energy consumption on the offioader was 1121 of that on an ultra-low power cpu.","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":"75 1","pages":"52-59"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A non-volatile reconfigurable offloader for wireless sensor nodes\",\"authors\":\"S. Nakaya, M. Miyamura, N. Sakimura, Yuichi Nakamura, T. Sugibayashi\",\"doi\":\"10.1145/2460216.2460232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy saving is currently one of the most important issues in the development of battery-powered wireless sensor nodes (WSNs). We have developed a non-volatile reconfigurable offioader for flexible and highly efficient processing on WSNs that uses NanoBridges (NBs), which are novel non-volatile and reprogrammable switching elements. Non-volatility is essential for the intermittent operation of WSNs due to the requirement of power-on without loading configuration data. We implemented a data compression algorithm on the offioader that reduces energy consumption during data transmission. Simulation results showed that the energy consumption on the offioader was 1121 of that on an ultra-low power cpu.\",\"PeriodicalId\":38964,\"journal\":{\"name\":\"IPSJ Transactions on System LSI Design Methodology\",\"volume\":\"75 1\",\"pages\":\"52-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on System LSI Design Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2460216.2460232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on System LSI Design Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2460216.2460232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
A non-volatile reconfigurable offloader for wireless sensor nodes
Energy saving is currently one of the most important issues in the development of battery-powered wireless sensor nodes (WSNs). We have developed a non-volatile reconfigurable offioader for flexible and highly efficient processing on WSNs that uses NanoBridges (NBs), which are novel non-volatile and reprogrammable switching elements. Non-volatility is essential for the intermittent operation of WSNs due to the requirement of power-on without loading configuration data. We implemented a data compression algorithm on the offioader that reduces energy consumption during data transmission. Simulation results showed that the energy consumption on the offioader was 1121 of that on an ultra-low power cpu.