胖还是强:两栖蝌蚪的资源分配策略和潜在的代谢机制。

Wei Zhu, Liming Chang, Guocheng Shu, Bin Wang, Jianping Jiang
{"title":"胖还是强:两栖蝌蚪的资源分配策略和潜在的代谢机制。","authors":"Wei Zhu, Liming Chang, Guocheng Shu, Bin Wang, Jianping Jiang","doi":"10.21203/rs.3.rs-77495/v1","DOIUrl":null,"url":null,"abstract":"The allocation of resources between storage and somatic growth is an essential physiological phenomenon in animals. Allocation mechanisms have broad theoretical and applied implications. The real-time resource allocation patterns in animals remain to be elucidated, and there is limited understanding of the metabolic mechanisms. We investigated the resource allocation strategy of Rana omeimontis tadpoles. Their ontogenetic fat accumulation began when body weight increased to 30-50 mg, at which time storage had a high priority in resource allocation. Beyond this weight range, somatic growth accelerated but storage investment was maintained, resulting in a positive correlation between body fat index and body weight at the population level. This pattern could be explained by assuming a positive relationship between storage abundance and growth investment, and this was supported by the prioritized increment of body fat to body weight when tadpoles were provided with increased food. At the metabolic level, hepatic fat accumulation was accompanied by upregulated utilization of fat storage, and the tadpoles presented lipid-based energy metabolism. Activating the mobilization of hepatic fat storage promoted somatic growth. In short, the liver is like a reservoir with valves that regulate energy flow for downstream developmental processes. These results provide novel mechanistic insights into resource allocation.","PeriodicalId":93949,"journal":{"name":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","volume":"1 1","pages":"100825"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fatter or stronger: Resource allocation strategy and the underlying metabolic mechanisms in amphibian tadpoles.\",\"authors\":\"Wei Zhu, Liming Chang, Guocheng Shu, Bin Wang, Jianping Jiang\",\"doi\":\"10.21203/rs.3.rs-77495/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The allocation of resources between storage and somatic growth is an essential physiological phenomenon in animals. Allocation mechanisms have broad theoretical and applied implications. The real-time resource allocation patterns in animals remain to be elucidated, and there is limited understanding of the metabolic mechanisms. We investigated the resource allocation strategy of Rana omeimontis tadpoles. Their ontogenetic fat accumulation began when body weight increased to 30-50 mg, at which time storage had a high priority in resource allocation. Beyond this weight range, somatic growth accelerated but storage investment was maintained, resulting in a positive correlation between body fat index and body weight at the population level. This pattern could be explained by assuming a positive relationship between storage abundance and growth investment, and this was supported by the prioritized increment of body fat to body weight when tadpoles were provided with increased food. At the metabolic level, hepatic fat accumulation was accompanied by upregulated utilization of fat storage, and the tadpoles presented lipid-based energy metabolism. Activating the mobilization of hepatic fat storage promoted somatic growth. In short, the liver is like a reservoir with valves that regulate energy flow for downstream developmental processes. These results provide novel mechanistic insights into resource allocation.\",\"PeriodicalId\":93949,\"journal\":{\"name\":\"Comparative biochemistry and physiology. Part D, Genomics & proteomics\",\"volume\":\"1 1\",\"pages\":\"100825\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative biochemistry and physiology. Part D, Genomics & proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-77495/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-77495/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在贮藏和体细胞生长之间进行资源分配是动物必不可少的生理现象。分配机制具有广泛的理论和应用意义。动物体内的实时资源分配模式仍有待阐明,对代谢机制的了解也很有限。研究了小鲵蝌蚪的资源配置策略。当体重增加到30-50 mg时,它们的个体脂肪积累开始,此时储存在资源分配中具有较高的优先权。在此体重范围之外,体细胞生长加快,但储存投入保持不变,导致体脂指数与体重在种群水平上呈正相关。这种模式可以通过假设储存丰度与生长投资呈正相关来解释,并且当蝌蚪提供更多食物时,体脂对体重的优先增加也支持了这一模式。在代谢水平上,肝脏脂肪积累伴随着脂肪储存利用的上调,蝌蚪呈现以脂质为基础的能量代谢。激活肝脏脂肪储存的动员促进了体细胞的生长。简而言之,肝脏就像一个水库,有阀门调节下游发育过程的能量流。这些结果为资源分配提供了新的机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatter or stronger: Resource allocation strategy and the underlying metabolic mechanisms in amphibian tadpoles.
The allocation of resources between storage and somatic growth is an essential physiological phenomenon in animals. Allocation mechanisms have broad theoretical and applied implications. The real-time resource allocation patterns in animals remain to be elucidated, and there is limited understanding of the metabolic mechanisms. We investigated the resource allocation strategy of Rana omeimontis tadpoles. Their ontogenetic fat accumulation began when body weight increased to 30-50 mg, at which time storage had a high priority in resource allocation. Beyond this weight range, somatic growth accelerated but storage investment was maintained, resulting in a positive correlation between body fat index and body weight at the population level. This pattern could be explained by assuming a positive relationship between storage abundance and growth investment, and this was supported by the prioritized increment of body fat to body weight when tadpoles were provided with increased food. At the metabolic level, hepatic fat accumulation was accompanied by upregulated utilization of fat storage, and the tadpoles presented lipid-based energy metabolism. Activating the mobilization of hepatic fat storage promoted somatic growth. In short, the liver is like a reservoir with valves that regulate energy flow for downstream developmental processes. These results provide novel mechanistic insights into resource allocation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信