Gonggiang He, Hongcun Guo, Shujin Li, Junwen Zhou, Yao Yao
{"title":"烧结纳米银的压缩破坏机理","authors":"Gonggiang He, Hongcun Guo, Shujin Li, Junwen Zhou, Yao Yao","doi":"10.1557/s43578-023-01135-1","DOIUrl":null,"url":null,"abstract":"As a promising packaging material for the third-generation semiconductor, the compressive behavior and failure mechanism of sintered nano-silver are vital for the reliability of packaging structure, which were investigated experimentally and numerically in the current study. The rate-dependent properties and microstructure evolution were determined by compression experiments under five loading rates at room temperature. Microscopically, the voids in the sintered nano-silver exhibit multi-scale distribution under specific sintering conditions, the corresponding failure mechanism is clarified by finite element analysis and scanning electron microscopy. Furthermore, a yield strength model with different porosity was proposed, which was adopted in the finite element analysis to investigate the microstructure evolution of sintered nano-silver. Eventually, the multi-scale simulation of the failure realized through the finite element model, the stress state of microstructure and the failure mechanism that is dependent on the multi-stage void were confirmed by the numerical simulation and experimental analysis. Microstructure of fracture section of sintered nano-silver: (a) morphology of Type I voids; (b) void closure of Type II voids; (c) compressive failure; (d) crack on the wall of Type I voids; (e) deformation of masonry-liked structure; (f) interfacial failure of Type II voids; (g) deformed void wall of Type I voids; (h) shear failure of sintered neck; (i) tensile failure of sintered neck; (j) Schematic diagram of compressive failure; (k) schematic diagram of shear fracture; (l) schematic diagram of tensile failure","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":"48 1","pages":"4201 - 4213"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressive failure mechanism of sintered nano-silver\",\"authors\":\"Gonggiang He, Hongcun Guo, Shujin Li, Junwen Zhou, Yao Yao\",\"doi\":\"10.1557/s43578-023-01135-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a promising packaging material for the third-generation semiconductor, the compressive behavior and failure mechanism of sintered nano-silver are vital for the reliability of packaging structure, which were investigated experimentally and numerically in the current study. The rate-dependent properties and microstructure evolution were determined by compression experiments under five loading rates at room temperature. Microscopically, the voids in the sintered nano-silver exhibit multi-scale distribution under specific sintering conditions, the corresponding failure mechanism is clarified by finite element analysis and scanning electron microscopy. Furthermore, a yield strength model with different porosity was proposed, which was adopted in the finite element analysis to investigate the microstructure evolution of sintered nano-silver. Eventually, the multi-scale simulation of the failure realized through the finite element model, the stress state of microstructure and the failure mechanism that is dependent on the multi-stage void were confirmed by the numerical simulation and experimental analysis. Microstructure of fracture section of sintered nano-silver: (a) morphology of Type I voids; (b) void closure of Type II voids; (c) compressive failure; (d) crack on the wall of Type I voids; (e) deformation of masonry-liked structure; (f) interfacial failure of Type II voids; (g) deformed void wall of Type I voids; (h) shear failure of sintered neck; (i) tensile failure of sintered neck; (j) Schematic diagram of compressive failure; (k) schematic diagram of shear fracture; (l) schematic diagram of tensile failure\",\"PeriodicalId\":14079,\"journal\":{\"name\":\"International Journal of Materials Research\",\"volume\":\"48 1\",\"pages\":\"4201 - 4213\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-023-01135-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-023-01135-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Compressive failure mechanism of sintered nano-silver
As a promising packaging material for the third-generation semiconductor, the compressive behavior and failure mechanism of sintered nano-silver are vital for the reliability of packaging structure, which were investigated experimentally and numerically in the current study. The rate-dependent properties and microstructure evolution were determined by compression experiments under five loading rates at room temperature. Microscopically, the voids in the sintered nano-silver exhibit multi-scale distribution under specific sintering conditions, the corresponding failure mechanism is clarified by finite element analysis and scanning electron microscopy. Furthermore, a yield strength model with different porosity was proposed, which was adopted in the finite element analysis to investigate the microstructure evolution of sintered nano-silver. Eventually, the multi-scale simulation of the failure realized through the finite element model, the stress state of microstructure and the failure mechanism that is dependent on the multi-stage void were confirmed by the numerical simulation and experimental analysis. Microstructure of fracture section of sintered nano-silver: (a) morphology of Type I voids; (b) void closure of Type II voids; (c) compressive failure; (d) crack on the wall of Type I voids; (e) deformation of masonry-liked structure; (f) interfacial failure of Type II voids; (g) deformed void wall of Type I voids; (h) shear failure of sintered neck; (i) tensile failure of sintered neck; (j) Schematic diagram of compressive failure; (k) schematic diagram of shear fracture; (l) schematic diagram of tensile failure
期刊介绍:
The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.