{"title":"关于Higman-Thompson群的一族表示","authors":"Andr'e Guimaraes, P. R. Pinto","doi":"10.1515/jgth-2021-0190","DOIUrl":null,"url":null,"abstract":"Abstract We obtain an uncountable family of inequivalent and irreducible representations of the Higman–Thompson groups F n ⊂ T n ⊂ V n F_{n}\\subset T_{n}\\subset V_{n} . This is accomplished by considering a family of representations of the Higman–Thompson groups V n V_{n} that arise from representations of Cuntz algebras, each one acting on a Hilbert space built upon the orbit of a point x ∈ [ 0 , 1 ) x\\in[0,1) under the dynamical system Φ ( x ) = n x ( mod 1 ) \\Phi(x)=nx\\pmod{1} . Every such representation is retrieved through the action of V n V_{n} on orb ( x ) \\operatorname{orb}(x) , and their restrictions to the subgroups F n F_{n} and T n T_{n} of V n V_{n} are studied using properties of the groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On a family of representations of the Higman–Thompson groups\",\"authors\":\"Andr'e Guimaraes, P. R. Pinto\",\"doi\":\"10.1515/jgth-2021-0190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We obtain an uncountable family of inequivalent and irreducible representations of the Higman–Thompson groups F n ⊂ T n ⊂ V n F_{n}\\\\subset T_{n}\\\\subset V_{n} . This is accomplished by considering a family of representations of the Higman–Thompson groups V n V_{n} that arise from representations of Cuntz algebras, each one acting on a Hilbert space built upon the orbit of a point x ∈ [ 0 , 1 ) x\\\\in[0,1) under the dynamical system Φ ( x ) = n x ( mod 1 ) \\\\Phi(x)=nx\\\\pmod{1} . Every such representation is retrieved through the action of V n V_{n} on orb ( x ) \\\\operatorname{orb}(x) , and their restrictions to the subgroups F n F_{n} and T n T_{n} of V n V_{n} are studied using properties of the groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2021-0190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2021-0190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
摘要我们得到了Higman-Thompson群F n∧T n∧V n F_{n}\子集T_{n}\子集V_{n}的不可数不等式和不可约表示族。这是通过考虑由Cuntz代数表示产生的Higman-Thompson群V n V_{n}的一系列表示来实现的,每个表示作用于希尔伯特空间,该空间建立在点x∈[0,1)x\in[0,1)的轨道上,在动力系统Φ (x)=n (x) \Phi(x)=nx\pmod{1}下。通过V n V_{n}对orb (x) \算子名{orb}(x)的作用来检索每一个这样的表示,并利用群的性质研究了它们对V n V_{n}的子群F n F_{n}和T n T_{n}的限制。
On a family of representations of the Higman–Thompson groups
Abstract We obtain an uncountable family of inequivalent and irreducible representations of the Higman–Thompson groups F n ⊂ T n ⊂ V n F_{n}\subset T_{n}\subset V_{n} . This is accomplished by considering a family of representations of the Higman–Thompson groups V n V_{n} that arise from representations of Cuntz algebras, each one acting on a Hilbert space built upon the orbit of a point x ∈ [ 0 , 1 ) x\in[0,1) under the dynamical system Φ ( x ) = n x ( mod 1 ) \Phi(x)=nx\pmod{1} . Every such representation is retrieved through the action of V n V_{n} on orb ( x ) \operatorname{orb}(x) , and their restrictions to the subgroups F n F_{n} and T n T_{n} of V n V_{n} are studied using properties of the groups.