多轴承故障诊断的贝叶斯定理

IF 1 Q4 ENGINEERING, MECHANICAL
Ts. YEO SIANG CHUAN, Ir. Dr. Lim Meng Hee, Dr. Hui Kar Hoou, Eng Hoe Cheng
{"title":"多轴承故障诊断的贝叶斯定理","authors":"Ts. YEO SIANG CHUAN, Ir. Dr. Lim Meng Hee, Dr. Hui Kar Hoou, Eng Hoe Cheng","doi":"10.15282/ijame.20.2.2023.04.0802","DOIUrl":null,"url":null,"abstract":"During the process of fault diagnosis for automated machinery, support vector machines is one of the suitable choices to categorize multiple faults for machinery. Regardless of the volume of sampling data, support vector machines can handle a high number of input features. It was learned that support vector machines could only sense binary fault classification (such as faulty or healthy). However, the classification accuracy was found to be lower when using support vector machines to diagnose multi-bearing faults classifications. This is because the multiple classification problem will be reduced into several sub-problems of binary classification when support vector machines adapt to multi-bearing faults classifications. From there, many contradictory results will occur from every support vector machine model. In order to solve the situation, the combination of Support Vector Machines and Bayes’ Theorem is introduced to every single support vector machine model to overcome the conflicting results. This method will also increase classification accuracy. The proposed Support Vector Machines - Bayes’ Theorem method has resulted in an increase in the accuracy of the fault diagnosis model. The analysis result has shown an accuracy from 72% to 95%. It proved that Support Vector Machines - Bayes’ Theorem continuously eliminates and refines conflicting results from the original support vector machine model. Compared to the existing support vector machine, the proposed Support Vector Machines - Bayes’ Theorem has proven its effectiveness in diagnosing the multi-bearing faults problem classification.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"40 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayes' Theorem for Multi-Bearing Faults Diagnosis\",\"authors\":\"Ts. YEO SIANG CHUAN, Ir. Dr. Lim Meng Hee, Dr. Hui Kar Hoou, Eng Hoe Cheng\",\"doi\":\"10.15282/ijame.20.2.2023.04.0802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the process of fault diagnosis for automated machinery, support vector machines is one of the suitable choices to categorize multiple faults for machinery. Regardless of the volume of sampling data, support vector machines can handle a high number of input features. It was learned that support vector machines could only sense binary fault classification (such as faulty or healthy). However, the classification accuracy was found to be lower when using support vector machines to diagnose multi-bearing faults classifications. This is because the multiple classification problem will be reduced into several sub-problems of binary classification when support vector machines adapt to multi-bearing faults classifications. From there, many contradictory results will occur from every support vector machine model. In order to solve the situation, the combination of Support Vector Machines and Bayes’ Theorem is introduced to every single support vector machine model to overcome the conflicting results. This method will also increase classification accuracy. The proposed Support Vector Machines - Bayes’ Theorem method has resulted in an increase in the accuracy of the fault diagnosis model. The analysis result has shown an accuracy from 72% to 95%. It proved that Support Vector Machines - Bayes’ Theorem continuously eliminates and refines conflicting results from the original support vector machine model. Compared to the existing support vector machine, the proposed Support Vector Machines - Bayes’ Theorem has proven its effectiveness in diagnosing the multi-bearing faults problem classification.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.20.2.2023.04.0802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.2.2023.04.0802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

在自动化机械故障诊断过程中,支持向量机是对机械多故障进行分类的合适选择之一。无论采样数据的数量如何,支持向量机都可以处理大量的输入特征。了解到支持向量机只能感知二元故障分类(如故障或健康)。然而,当使用支持向量机诊断多轴承故障分类时,发现分类精度较低。这是因为当支持向量机适应多轴承故障分类时,多重分类问题将被分解为二值分类的若干子问题。在此基础上,每个支持向量机模型都会产生许多相互矛盾的结果。为了解决这种情况,将支持向量机与贝叶斯定理相结合引入到每个支持向量机模型中,以克服结果冲突。该方法还可以提高分类精度。提出的支持向量机-贝叶斯定理方法提高了故障诊断模型的准确率。分析结果表明,准确度在72% ~ 95%之间。证明了支持向量机-贝叶斯定理对原始支持向量机模型的冲突结果进行了不断的消除和细化。通过与现有支持向量机的比较,证明了所提出的支持向量机-贝叶斯定理在多轴承故障诊断问题分类中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayes' Theorem for Multi-Bearing Faults Diagnosis
During the process of fault diagnosis for automated machinery, support vector machines is one of the suitable choices to categorize multiple faults for machinery. Regardless of the volume of sampling data, support vector machines can handle a high number of input features. It was learned that support vector machines could only sense binary fault classification (such as faulty or healthy). However, the classification accuracy was found to be lower when using support vector machines to diagnose multi-bearing faults classifications. This is because the multiple classification problem will be reduced into several sub-problems of binary classification when support vector machines adapt to multi-bearing faults classifications. From there, many contradictory results will occur from every support vector machine model. In order to solve the situation, the combination of Support Vector Machines and Bayes’ Theorem is introduced to every single support vector machine model to overcome the conflicting results. This method will also increase classification accuracy. The proposed Support Vector Machines - Bayes’ Theorem method has resulted in an increase in the accuracy of the fault diagnosis model. The analysis result has shown an accuracy from 72% to 95%. It proved that Support Vector Machines - Bayes’ Theorem continuously eliminates and refines conflicting results from the original support vector machine model. Compared to the existing support vector machine, the proposed Support Vector Machines - Bayes’ Theorem has proven its effectiveness in diagnosing the multi-bearing faults problem classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
10.00%
发文量
43
审稿时长
20 weeks
期刊介绍: The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信