Hendrix Muma Chalwe, O. Lungu, A. Mweetwa, E. Phiri, Jones Yengwe, Samuel Muriu Christopher Njoroge, R. Brandenburg
{"title":"石膏对赞比亚花生品种豆荚产量及采前黄曲霉毒素污染的影响","authors":"Hendrix Muma Chalwe, O. Lungu, A. Mweetwa, E. Phiri, Jones Yengwe, Samuel Muriu Christopher Njoroge, R. Brandenburg","doi":"10.5897/AJPS2019.1807","DOIUrl":null,"url":null,"abstract":"Good agricultural practices are an effective means of minimizing pre-harvest aflatoxin contamination in peanuts. A field experiment was conducted to evaluate the effect of gypsum on pod yield and aflatoxin contamination in three peanut cultivars (Kadononga, MGV 4 and MGV 5) in Zambia. The experiment was conducted in Chongwe and Lusaka districts. Gypsum (15.6 % calcium) was applied at rates of 0 and 400 kg/ha at flowering stage. Although gypsum had no significant effect on aflatoxin contamination, there were significant differences (p = 0.009) in cultivar susceptibility to aflatoxin contamination. The cultivar with the smallest kernels had 18.8% lower aflatoxin content than the large-kernelled cultivar. Additionally, gypsum did not have a clear effect on pod yield. For instance, gypsum was associated with 44.8% more grain-filled pods in Kadononga (p = 0.005) at the site in Lusaka, but this result did not apply to the other two cultivars. At the site in Chongwe, gypsum was associated with 34.6% higher pod yield of MGV 5 only (p = 0.006). These results further suggest that plant factors such as kernel size may have an influence on natural resistance to aflatoxin contamination in peanuts. \n \n \n \n Key words: Aflatoxin, gypsum, peanut cultivar, pod-yield, Zambia.","PeriodicalId":7675,"journal":{"name":"African Journal of Plant Science","volume":"1 1","pages":"134-138"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effects of gypsum on pod-yield and pre-harvest aflatoxin contamination in selected peanut cultivars \\nof Zambia\",\"authors\":\"Hendrix Muma Chalwe, O. Lungu, A. Mweetwa, E. Phiri, Jones Yengwe, Samuel Muriu Christopher Njoroge, R. Brandenburg\",\"doi\":\"10.5897/AJPS2019.1807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Good agricultural practices are an effective means of minimizing pre-harvest aflatoxin contamination in peanuts. A field experiment was conducted to evaluate the effect of gypsum on pod yield and aflatoxin contamination in three peanut cultivars (Kadononga, MGV 4 and MGV 5) in Zambia. The experiment was conducted in Chongwe and Lusaka districts. Gypsum (15.6 % calcium) was applied at rates of 0 and 400 kg/ha at flowering stage. Although gypsum had no significant effect on aflatoxin contamination, there were significant differences (p = 0.009) in cultivar susceptibility to aflatoxin contamination. The cultivar with the smallest kernels had 18.8% lower aflatoxin content than the large-kernelled cultivar. Additionally, gypsum did not have a clear effect on pod yield. For instance, gypsum was associated with 44.8% more grain-filled pods in Kadononga (p = 0.005) at the site in Lusaka, but this result did not apply to the other two cultivars. At the site in Chongwe, gypsum was associated with 34.6% higher pod yield of MGV 5 only (p = 0.006). These results further suggest that plant factors such as kernel size may have an influence on natural resistance to aflatoxin contamination in peanuts. \\n \\n \\n \\n Key words: Aflatoxin, gypsum, peanut cultivar, pod-yield, Zambia.\",\"PeriodicalId\":7675,\"journal\":{\"name\":\"African Journal of Plant Science\",\"volume\":\"1 1\",\"pages\":\"134-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"African Journal of Plant Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5897/AJPS2019.1807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Plant Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/AJPS2019.1807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effects of gypsum on pod-yield and pre-harvest aflatoxin contamination in selected peanut cultivars
of Zambia
Good agricultural practices are an effective means of minimizing pre-harvest aflatoxin contamination in peanuts. A field experiment was conducted to evaluate the effect of gypsum on pod yield and aflatoxin contamination in three peanut cultivars (Kadononga, MGV 4 and MGV 5) in Zambia. The experiment was conducted in Chongwe and Lusaka districts. Gypsum (15.6 % calcium) was applied at rates of 0 and 400 kg/ha at flowering stage. Although gypsum had no significant effect on aflatoxin contamination, there were significant differences (p = 0.009) in cultivar susceptibility to aflatoxin contamination. The cultivar with the smallest kernels had 18.8% lower aflatoxin content than the large-kernelled cultivar. Additionally, gypsum did not have a clear effect on pod yield. For instance, gypsum was associated with 44.8% more grain-filled pods in Kadononga (p = 0.005) at the site in Lusaka, but this result did not apply to the other two cultivars. At the site in Chongwe, gypsum was associated with 34.6% higher pod yield of MGV 5 only (p = 0.006). These results further suggest that plant factors such as kernel size may have an influence on natural resistance to aflatoxin contamination in peanuts.
Key words: Aflatoxin, gypsum, peanut cultivar, pod-yield, Zambia.