Z. Mai, Wenyan Wei, Haibing Yu, Yongze Chen, Yongxiang Wang, Yuanlin Ding
{"title":"ApoE与TREM2蛋白相互作用的分子识别","authors":"Z. Mai, Wenyan Wei, Haibing Yu, Yongze Chen, Yongxiang Wang, Yuanlin Ding","doi":"10.1515/tnsci-2022-0218","DOIUrl":null,"url":null,"abstract":"Abstract Alzheimer’s disease (AD) is the most common type of dementia. The ε4 allele of the apolipoprotein E (ApoE) gene is the strongest known genetic risk factor for late-onset AD. Triggering receptor expressed on myeloid cells 2 (TREM2) is another important risk factor affecting the AD process after ApoE. Emerging evidence has identified TREM2 as a putative receptor for ApoE, raising the possibility that interactions between ApoE and TREM2 modulate the pathogenesis of AD. In this study, we performed molecular docking and molecular dynamics (MD) analyses to characterize the ApoE–TREM2 interaction and further investigated the effect of the major TREM2 disease-associated mutation (R47H) on the affinity of TREM2 for ApoE. The results indicate that the binding energy between ApoE and TREM2 occurs in an isoform-dependent manner with the following potency rank order: ApoE4 > ApoE3 > ApoE2. In addition, the R47H mutant reduced the interaction between ApoE and TREM2 protein, which may be attributed to decreased hydrogen-bonding interactions, hydrophobic interactions, and electrostatic forces between ApoE and TREM2. Our study analyzed the molecular pattern of the interactions between ApoE and TREM2 and how the variants affect these interactions based on in silico modeling, and the results might help to elucidate the interaction mechanism between ApoE and TREM2. Additional experimental studies will be needed to verify and explore the current findings.","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"15 1","pages":"93 - 103"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Molecular recognition of the interaction between ApoE and the TREM2 protein\",\"authors\":\"Z. Mai, Wenyan Wei, Haibing Yu, Yongze Chen, Yongxiang Wang, Yuanlin Ding\",\"doi\":\"10.1515/tnsci-2022-0218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Alzheimer’s disease (AD) is the most common type of dementia. The ε4 allele of the apolipoprotein E (ApoE) gene is the strongest known genetic risk factor for late-onset AD. Triggering receptor expressed on myeloid cells 2 (TREM2) is another important risk factor affecting the AD process after ApoE. Emerging evidence has identified TREM2 as a putative receptor for ApoE, raising the possibility that interactions between ApoE and TREM2 modulate the pathogenesis of AD. In this study, we performed molecular docking and molecular dynamics (MD) analyses to characterize the ApoE–TREM2 interaction and further investigated the effect of the major TREM2 disease-associated mutation (R47H) on the affinity of TREM2 for ApoE. The results indicate that the binding energy between ApoE and TREM2 occurs in an isoform-dependent manner with the following potency rank order: ApoE4 > ApoE3 > ApoE2. In addition, the R47H mutant reduced the interaction between ApoE and TREM2 protein, which may be attributed to decreased hydrogen-bonding interactions, hydrophobic interactions, and electrostatic forces between ApoE and TREM2. Our study analyzed the molecular pattern of the interactions between ApoE and TREM2 and how the variants affect these interactions based on in silico modeling, and the results might help to elucidate the interaction mechanism between ApoE and TREM2. Additional experimental studies will be needed to verify and explore the current findings.\",\"PeriodicalId\":23227,\"journal\":{\"name\":\"Translational Neuroscience\",\"volume\":\"15 1\",\"pages\":\"93 - 103\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/tnsci-2022-0218\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0218","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Molecular recognition of the interaction between ApoE and the TREM2 protein
Abstract Alzheimer’s disease (AD) is the most common type of dementia. The ε4 allele of the apolipoprotein E (ApoE) gene is the strongest known genetic risk factor for late-onset AD. Triggering receptor expressed on myeloid cells 2 (TREM2) is another important risk factor affecting the AD process after ApoE. Emerging evidence has identified TREM2 as a putative receptor for ApoE, raising the possibility that interactions between ApoE and TREM2 modulate the pathogenesis of AD. In this study, we performed molecular docking and molecular dynamics (MD) analyses to characterize the ApoE–TREM2 interaction and further investigated the effect of the major TREM2 disease-associated mutation (R47H) on the affinity of TREM2 for ApoE. The results indicate that the binding energy between ApoE and TREM2 occurs in an isoform-dependent manner with the following potency rank order: ApoE4 > ApoE3 > ApoE2. In addition, the R47H mutant reduced the interaction between ApoE and TREM2 protein, which may be attributed to decreased hydrogen-bonding interactions, hydrophobic interactions, and electrostatic forces between ApoE and TREM2. Our study analyzed the molecular pattern of the interactions between ApoE and TREM2 and how the variants affect these interactions based on in silico modeling, and the results might help to elucidate the interaction mechanism between ApoE and TREM2. Additional experimental studies will be needed to verify and explore the current findings.
期刊介绍:
Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.