telenanpresence宣言

Angelina Np, I Tamvakis
{"title":"telenanpresence宣言","authors":"Angelina Np, I Tamvakis","doi":"10.31031/sbb.2019.03.000562","DOIUrl":null,"url":null,"abstract":"Imagine being able to shrink and grow at will and operate as a human being across different scales. Then take this old movie idea and combine it with the emerging technology of telepresence. What you get is the ability of being present, and interact with your surroundings, in a distant location, in a different spatial scale. Realising a telepresence robot in the 1-meter scale is within our grasp, with many such machines being built around the world. What we want to propose here is that Telenanopresence technology, i.e. the ability to make telepresence robots in all different spatial scales, with a focus in the milli-micro scale, will be crucial for the miniaturisation of many industrial processes, and surely a fantastic way for exploring our creativity in the microcosmos. Feynman, in his seminal talk “There’s plenty of room at the bottom” [1] exposed the world to the reality of the vast difference in scale between the atoms and us, and how much space for innovation exists in between. He proposed the beautiful idea of recursively exploring this scale-space, by designing and operating a set of tools that is able to make the same set of tools but all somewhat smaller. By this process he wanted to make humanity able, in the end, to manipulate individual atoms, and by combining our fabrication ability across all scales in between, make us master fabricators. It is our contention that his dream was not followed in earnest in the decades since. Marvelous microfabrication techniques like photolithography are changing the world around us but have made shortcuts to the microcosmos that do not allow for the creativity of everyday humans to unfold in each scale in between.","PeriodicalId":21951,"journal":{"name":"Significances of Bioengineering & Biosciences","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Telenanopresence Manifesto\",\"authors\":\"Angelina Np, I Tamvakis\",\"doi\":\"10.31031/sbb.2019.03.000562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imagine being able to shrink and grow at will and operate as a human being across different scales. Then take this old movie idea and combine it with the emerging technology of telepresence. What you get is the ability of being present, and interact with your surroundings, in a distant location, in a different spatial scale. Realising a telepresence robot in the 1-meter scale is within our grasp, with many such machines being built around the world. What we want to propose here is that Telenanopresence technology, i.e. the ability to make telepresence robots in all different spatial scales, with a focus in the milli-micro scale, will be crucial for the miniaturisation of many industrial processes, and surely a fantastic way for exploring our creativity in the microcosmos. Feynman, in his seminal talk “There’s plenty of room at the bottom” [1] exposed the world to the reality of the vast difference in scale between the atoms and us, and how much space for innovation exists in between. He proposed the beautiful idea of recursively exploring this scale-space, by designing and operating a set of tools that is able to make the same set of tools but all somewhat smaller. By this process he wanted to make humanity able, in the end, to manipulate individual atoms, and by combining our fabrication ability across all scales in between, make us master fabricators. It is our contention that his dream was not followed in earnest in the decades since. Marvelous microfabrication techniques like photolithography are changing the world around us but have made shortcuts to the microcosmos that do not allow for the creativity of everyday humans to unfold in each scale in between.\",\"PeriodicalId\":21951,\"journal\":{\"name\":\"Significances of Bioengineering & Biosciences\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Significances of Bioengineering & Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31031/sbb.2019.03.000562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Significances of Bioengineering & Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31031/sbb.2019.03.000562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

想象一下,可以随心所欲地缩小和增长,像一个人一样在不同的尺度上运作。然后把这个老电影的想法和新兴的远程呈现技术结合起来。你得到的是在一个遥远的地方,在一个不同的空间尺度上,与你的周围环境互动的能力。实现1米尺度的远程呈现机器人是在我们的掌握之中,世界各地正在建造许多这样的机器。我们想在这里提出的是远程呈现技术,即在所有不同的空间尺度上制造远程呈现机器人的能力,重点是在毫米-微观尺度上,这将对许多工业过程的小型化至关重要,而且肯定是在微观世界中探索我们创造力的一种奇妙方式。费曼在他的开创性演讲“底部有足够的空间”[1]中向世界揭示了原子和我们之间在尺度上的巨大差异,以及这两者之间存在着多大的创新空间。他提出了一个美妙的想法,通过设计和操作一组工具,递归地探索这个尺度空间,这些工具能够制造出同样的一组工具,但都要小一些。通过这个过程,他想让人类最终能够操纵单个原子,并通过结合我们在所有尺度之间的制造能力,使我们成为制造大师。我们的论点是,他的梦想在此后的几十年里没有得到认真的追求。像光刻术这样奇妙的微加工技术正在改变我们周围的世界,但也为微观世界开辟了捷径,不允许日常人类的创造力在两者之间的每个尺度上展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Telenanopresence Manifesto
Imagine being able to shrink and grow at will and operate as a human being across different scales. Then take this old movie idea and combine it with the emerging technology of telepresence. What you get is the ability of being present, and interact with your surroundings, in a distant location, in a different spatial scale. Realising a telepresence robot in the 1-meter scale is within our grasp, with many such machines being built around the world. What we want to propose here is that Telenanopresence technology, i.e. the ability to make telepresence robots in all different spatial scales, with a focus in the milli-micro scale, will be crucial for the miniaturisation of many industrial processes, and surely a fantastic way for exploring our creativity in the microcosmos. Feynman, in his seminal talk “There’s plenty of room at the bottom” [1] exposed the world to the reality of the vast difference in scale between the atoms and us, and how much space for innovation exists in between. He proposed the beautiful idea of recursively exploring this scale-space, by designing and operating a set of tools that is able to make the same set of tools but all somewhat smaller. By this process he wanted to make humanity able, in the end, to manipulate individual atoms, and by combining our fabrication ability across all scales in between, make us master fabricators. It is our contention that his dream was not followed in earnest in the decades since. Marvelous microfabrication techniques like photolithography are changing the world around us but have made shortcuts to the microcosmos that do not allow for the creativity of everyday humans to unfold in each scale in between.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信