布朗运动的跨度

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
S. Evans, J. Pitman, Wenpin Tang
{"title":"布朗运动的跨度","authors":"S. Evans, J. Pitman, Wenpin Tang","doi":"10.1214/16-AIHP749","DOIUrl":null,"url":null,"abstract":"Author(s): Evans, S; Pitman, J; Tang, W | Abstract: © Association des Publications de l'Institut Henri Poincare, 2017. For d ϵ {1, 2, 3}, let (Bdt ; t g 0) be a d-dimensional standard Brownian motion. We study the d-Brownian span set Span(d) := {t - s;Bds = Bdt for some 0 l s l t}. We prove that almost surely the random set Span(d) is α-compact and dense in ℝ+. In addition, we show that Span(1) = ℝ+ almost surely; the Lebesgue measure of Span(2) is 0 almost surely and its Hausdorff dimension is 1 almost surely; and the Hausdorff dimension of Span(3) is 12 almost surely. We also list a number of conjectures and open problems.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"14 1","pages":"1108-1135"},"PeriodicalIF":1.2000,"publicationDate":"2015-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The spans in Brownian motion\",\"authors\":\"S. Evans, J. Pitman, Wenpin Tang\",\"doi\":\"10.1214/16-AIHP749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Author(s): Evans, S; Pitman, J; Tang, W | Abstract: © Association des Publications de l'Institut Henri Poincare, 2017. For d ϵ {1, 2, 3}, let (Bdt ; t g 0) be a d-dimensional standard Brownian motion. We study the d-Brownian span set Span(d) := {t - s;Bds = Bdt for some 0 l s l t}. We prove that almost surely the random set Span(d) is α-compact and dense in ℝ+. In addition, we show that Span(1) = ℝ+ almost surely; the Lebesgue measure of Span(2) is 0 almost surely and its Hausdorff dimension is 1 almost surely; and the Hausdorff dimension of Span(3) is 12 almost surely. We also list a number of conjectures and open problems.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"14 1\",\"pages\":\"1108-1135\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2015-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/16-AIHP749\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/16-AIHP749","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

作者:Evans, s;皮特曼,J;摘要:©庞加莱研究所出版协会,2017。对于d λ{1,2,3},令(Bdt;它是一个d维标准布朗运动。我们研究了d-布朗张成集span (d):= {t - s;Bds = Bdt,对于一些0 l l s l t}。我们几乎肯定地证明了随机集Span(d)在h +上是α-紧密的。此外,我们证明了Span(1)几乎肯定地= 1 +;Span(2)的Lebesgue测度几乎肯定为0,其Hausdorff维数几乎肯定为1;Span(3)的Hausdorff维数几乎肯定是12。我们还列出了一些猜想和尚未解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The spans in Brownian motion
Author(s): Evans, S; Pitman, J; Tang, W | Abstract: © Association des Publications de l'Institut Henri Poincare, 2017. For d ϵ {1, 2, 3}, let (Bdt ; t g 0) be a d-dimensional standard Brownian motion. We study the d-Brownian span set Span(d) := {t - s;Bds = Bdt for some 0 l s l t}. We prove that almost surely the random set Span(d) is α-compact and dense in ℝ+. In addition, we show that Span(1) = ℝ+ almost surely; the Lebesgue measure of Span(2) is 0 almost surely and its Hausdorff dimension is 1 almost surely; and the Hausdorff dimension of Span(3) is 12 almost surely. We also list a number of conjectures and open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信