{"title":"激光折叠天线","authors":"Gabriel L. Smith, N. Lazarus, Seth Mccormick","doi":"10.1109/IMWS-AMP.2018.8457156","DOIUrl":null,"url":null,"abstract":"A new hands-free approach to antenna fabrication is presented here, with laser folding used to fabricate a prototype 94.5 GHz end-fed longitudinal shunt slot array (EFLSSA) antenna. Laser cutting and folding was demonstrated for creation of 3D metal antennas as a low cost, rapidly iterated alternative to machining techniques such as electro-discharge machining (EDM) and die forming. The technique used is based on a low cost and power 1064nm marking laser. All cutting and folding is done completely remotely using the laser itself from a blank sheet of metal foil. The demonstrated waveguide slots are cut to sub-micron precision, and modelling of the resulting structure is also presented.","PeriodicalId":6605,"journal":{"name":"2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)","volume":"13 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Laser Folded Antenna\",\"authors\":\"Gabriel L. Smith, N. Lazarus, Seth Mccormick\",\"doi\":\"10.1109/IMWS-AMP.2018.8457156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new hands-free approach to antenna fabrication is presented here, with laser folding used to fabricate a prototype 94.5 GHz end-fed longitudinal shunt slot array (EFLSSA) antenna. Laser cutting and folding was demonstrated for creation of 3D metal antennas as a low cost, rapidly iterated alternative to machining techniques such as electro-discharge machining (EDM) and die forming. The technique used is based on a low cost and power 1064nm marking laser. All cutting and folding is done completely remotely using the laser itself from a blank sheet of metal foil. The demonstrated waveguide slots are cut to sub-micron precision, and modelling of the resulting structure is also presented.\",\"PeriodicalId\":6605,\"journal\":{\"name\":\"2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)\",\"volume\":\"13 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMWS-AMP.2018.8457156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-AMP.2018.8457156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new hands-free approach to antenna fabrication is presented here, with laser folding used to fabricate a prototype 94.5 GHz end-fed longitudinal shunt slot array (EFLSSA) antenna. Laser cutting and folding was demonstrated for creation of 3D metal antennas as a low cost, rapidly iterated alternative to machining techniques such as electro-discharge machining (EDM) and die forming. The technique used is based on a low cost and power 1064nm marking laser. All cutting and folding is done completely remotely using the laser itself from a blank sheet of metal foil. The demonstrated waveguide slots are cut to sub-micron precision, and modelling of the resulting structure is also presented.