{"title":"评估动态和预测判别的反复事件模型:使用时间相关的c指数。","authors":"Jian Wang, Xinyang Jiang, Jing Ning","doi":"10.1093/biostatistics/kxad031","DOIUrl":null,"url":null,"abstract":"<p><p>Interest in analyzing recurrent event data has increased over the past few decades. One essential aspect of a risk prediction model for recurrent event data is to accurately distinguish individuals with different risks of developing a recurrent event. Although the concordance index (C-index) effectively evaluates the overall discriminative ability of a regression model for recurrent event data, a local measure is also desirable to capture dynamic performance of the regression model over time. Therefore, in this study, we propose a time-dependent C-index measure for inferring the model's discriminative ability locally. We formulated the C-index as a function of time using a flexible parametric model and constructed a concordance-based likelihood for estimation and inference. We adapted a perturbation-resampling procedure for variance estimation. Extensive simulations were conducted to investigate the proposed time-dependent C-index's finite-sample performance and estimation procedure. We applied the time-dependent C-index to three regression models of a study of re-hospitalization in patients with colorectal cancer to evaluate the models' discriminative capability.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471962/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating dynamic and predictive discrimination for recurrent event models: use of a time-dependent C-index.\",\"authors\":\"Jian Wang, Xinyang Jiang, Jing Ning\",\"doi\":\"10.1093/biostatistics/kxad031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interest in analyzing recurrent event data has increased over the past few decades. One essential aspect of a risk prediction model for recurrent event data is to accurately distinguish individuals with different risks of developing a recurrent event. Although the concordance index (C-index) effectively evaluates the overall discriminative ability of a regression model for recurrent event data, a local measure is also desirable to capture dynamic performance of the regression model over time. Therefore, in this study, we propose a time-dependent C-index measure for inferring the model's discriminative ability locally. We formulated the C-index as a function of time using a flexible parametric model and constructed a concordance-based likelihood for estimation and inference. We adapted a perturbation-resampling procedure for variance estimation. Extensive simulations were conducted to investigate the proposed time-dependent C-index's finite-sample performance and estimation procedure. We applied the time-dependent C-index to three regression models of a study of re-hospitalization in patients with colorectal cancer to evaluate the models' discriminative capability.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471962/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxad031\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad031","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluating dynamic and predictive discrimination for recurrent event models: use of a time-dependent C-index.
Interest in analyzing recurrent event data has increased over the past few decades. One essential aspect of a risk prediction model for recurrent event data is to accurately distinguish individuals with different risks of developing a recurrent event. Although the concordance index (C-index) effectively evaluates the overall discriminative ability of a regression model for recurrent event data, a local measure is also desirable to capture dynamic performance of the regression model over time. Therefore, in this study, we propose a time-dependent C-index measure for inferring the model's discriminative ability locally. We formulated the C-index as a function of time using a flexible parametric model and constructed a concordance-based likelihood for estimation and inference. We adapted a perturbation-resampling procedure for variance estimation. Extensive simulations were conducted to investigate the proposed time-dependent C-index's finite-sample performance and estimation procedure. We applied the time-dependent C-index to three regression models of a study of re-hospitalization in patients with colorectal cancer to evaluate the models' discriminative capability.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.