结垢效应诱导的快速淬火提高了微静电微镜的性能

Hao Ren, Weimin Wang, Haichao Cao, Sitao Fei, Yunping Niu, Zhihao Li
{"title":"结垢效应诱导的快速淬火提高了微静电微镜的性能","authors":"Hao Ren, Weimin Wang, Haichao Cao, Sitao Fei, Yunping Niu, Zhihao Li","doi":"10.1109/NEMS50311.2020.9265626","DOIUrl":null,"url":null,"abstract":"In this paper we study the scaling effect on the heat transfer of microfabricated electrostatic micromirrors with polysilicon and gold bimorph structure. Based on scaling effect study, it is found that as the characteristic length of micromirror reduces, rapid cooling occurs, and we implemented the scaling effect to perform thermal processing to cause rapid quenching and plastic deformation on microfabricated micromirrors to improve its performance, including the maximum out-of-plane displacement and bandwidth. Electrostatic micromirrors were fabricated by a two-layer polysilicon microfabrication process. Measurement results demonstrated that after the thermal processing, the maximum out-of-plane displacement increased by 60.8%, from 1.25 μm to 2.01 μm, and the 3dB bandwidth was increased by 40.7%, from 1.35 kHz to 1.90 kHz.","PeriodicalId":6787,"journal":{"name":"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)","volume":"38 1","pages":"545-548"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling Effect Induced Rapid Quenching Improves the Performance of Microfabricated Electrostatic Micromirrors\",\"authors\":\"Hao Ren, Weimin Wang, Haichao Cao, Sitao Fei, Yunping Niu, Zhihao Li\",\"doi\":\"10.1109/NEMS50311.2020.9265626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the scaling effect on the heat transfer of microfabricated electrostatic micromirrors with polysilicon and gold bimorph structure. Based on scaling effect study, it is found that as the characteristic length of micromirror reduces, rapid cooling occurs, and we implemented the scaling effect to perform thermal processing to cause rapid quenching and plastic deformation on microfabricated micromirrors to improve its performance, including the maximum out-of-plane displacement and bandwidth. Electrostatic micromirrors were fabricated by a two-layer polysilicon microfabrication process. Measurement results demonstrated that after the thermal processing, the maximum out-of-plane displacement increased by 60.8%, from 1.25 μm to 2.01 μm, and the 3dB bandwidth was increased by 40.7%, from 1.35 kHz to 1.90 kHz.\",\"PeriodicalId\":6787,\"journal\":{\"name\":\"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)\",\"volume\":\"38 1\",\"pages\":\"545-548\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS50311.2020.9265626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS50311.2020.9265626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了多晶硅和金双晶结构静电微镜的尺度效应对其传热的影响。通过尺度效应研究发现,随着微镜特征长度的减小,微镜会发生快速冷却,我们利用尺度效应对微镜进行热加工,使微镜快速淬火和塑性变形,从而提高微镜的最大面外位移和带宽等性能。采用双层多晶硅微加工工艺制备静电微镜。测量结果表明,热处理后的最大面外位移增加了60.8%,从1.25 μm增加到2.01 μm, 3dB带宽增加了40.7%,从1.35 kHz增加到1.90 kHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling Effect Induced Rapid Quenching Improves the Performance of Microfabricated Electrostatic Micromirrors
In this paper we study the scaling effect on the heat transfer of microfabricated electrostatic micromirrors with polysilicon and gold bimorph structure. Based on scaling effect study, it is found that as the characteristic length of micromirror reduces, rapid cooling occurs, and we implemented the scaling effect to perform thermal processing to cause rapid quenching and plastic deformation on microfabricated micromirrors to improve its performance, including the maximum out-of-plane displacement and bandwidth. Electrostatic micromirrors were fabricated by a two-layer polysilicon microfabrication process. Measurement results demonstrated that after the thermal processing, the maximum out-of-plane displacement increased by 60.8%, from 1.25 μm to 2.01 μm, and the 3dB bandwidth was increased by 40.7%, from 1.35 kHz to 1.90 kHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信