基于几何网格测量的无监督面部表情动画设计

Q3 Engineering
Niu Chunzhou, Zhu Yukai
{"title":"基于几何网格测量的无监督面部表情动画设计","authors":"Niu Chunzhou, Zhu Yukai","doi":"10.1504/IJRIS.2018.10013288","DOIUrl":null,"url":null,"abstract":"Many actual application images in the real world are formed by high dimensional data in most cases, while the manifold learning algorithm can explore the nonlinear information hidden in these high dimensional data. As most of manifold learning algorithms can only be defined in training cluster, it is impossible to project the sample on the lower dimensional space. In the thesis, we introduce a kind of double manifold algorithm based on LLE and Isomap. Different from the traditional LLE algorithm, our algorithm learns two kinds of manifold information in which one group of data relates to many types and it compares two kinds of single LLE algorithm and Isomap algorithm through the setting of the appropriate nearest neighbour number K. No matter for the recognition rate or running time, it is obviously superior to the other two kinds of algorithms and it can effectively achieve the estimation of facial expression and significantly reduce the computation complexity.","PeriodicalId":38715,"journal":{"name":"International Journal of Reasoning-based Intelligent Systems","volume":"79 1","pages":"96-101"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of unsupervised facial expression animation based on geometric grid measurement\",\"authors\":\"Niu Chunzhou, Zhu Yukai\",\"doi\":\"10.1504/IJRIS.2018.10013288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many actual application images in the real world are formed by high dimensional data in most cases, while the manifold learning algorithm can explore the nonlinear information hidden in these high dimensional data. As most of manifold learning algorithms can only be defined in training cluster, it is impossible to project the sample on the lower dimensional space. In the thesis, we introduce a kind of double manifold algorithm based on LLE and Isomap. Different from the traditional LLE algorithm, our algorithm learns two kinds of manifold information in which one group of data relates to many types and it compares two kinds of single LLE algorithm and Isomap algorithm through the setting of the appropriate nearest neighbour number K. No matter for the recognition rate or running time, it is obviously superior to the other two kinds of algorithms and it can effectively achieve the estimation of facial expression and significantly reduce the computation complexity.\",\"PeriodicalId\":38715,\"journal\":{\"name\":\"International Journal of Reasoning-based Intelligent Systems\",\"volume\":\"79 1\",\"pages\":\"96-101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reasoning-based Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJRIS.2018.10013288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reasoning-based Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJRIS.2018.10013288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

现实世界中许多实际应用图像大多是由高维数据构成的,流形学习算法可以挖掘这些高维数据中隐藏的非线性信息。由于大多数流形学习算法只能在训练聚类中定义,因此无法将样本投影到低维空间上。本文介绍了一种基于LLE和Isomap的双流形算法。与传统LLE算法不同的是,我们的算法学习两种流形信息,其中一组数据涉及多种类型,并通过设置合适的最近邻数k来比较两种单一LLE算法和Isomap算法。该算法明显优于其他两种算法,能够有效地实现面部表情的估计,显著降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of unsupervised facial expression animation based on geometric grid measurement
Many actual application images in the real world are formed by high dimensional data in most cases, while the manifold learning algorithm can explore the nonlinear information hidden in these high dimensional data. As most of manifold learning algorithms can only be defined in training cluster, it is impossible to project the sample on the lower dimensional space. In the thesis, we introduce a kind of double manifold algorithm based on LLE and Isomap. Different from the traditional LLE algorithm, our algorithm learns two kinds of manifold information in which one group of data relates to many types and it compares two kinds of single LLE algorithm and Isomap algorithm through the setting of the appropriate nearest neighbour number K. No matter for the recognition rate or running time, it is obviously superior to the other two kinds of algorithms and it can effectively achieve the estimation of facial expression and significantly reduce the computation complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
27
期刊介绍: IJRIS is an interdisciplinary forum that publishes original and significant work related to intelligent systems based on all kinds of formal and informal reasoning. Intelligent systems imply any systems that can do systematised reasoning, including automated and heuristic reasoning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信