{"title":"基于自动化的用户输入Sql注入检测与预防框架","authors":"Fredrick Ochieng Okello, D. Kaburu, Ndia G. John","doi":"10.5539/cis.v16n2p51","DOIUrl":null,"url":null,"abstract":"Autodect framework protects management information systems (MIS) and databases from user input SQL injection attacks. This framework overcomes intrusion or penetration into the system by automatically detecting and preventing attacks from the user input end. The attack intentions is also known since it is linked to a proxy database, which has a normal and abnormal code vector profiles that helps to gather information about the intent as well as knowing the areas of interest while conducting the attack. The information about the attack is forwarded to Autodect knowledge base (database), meaning that any successive attacks from the proxy database will be compared to the existing attack pattern logs in the knowledge base, in future this knowledge base-driven database will help organizations to analyze trends of attackers, profile them and deter them. The research evaluated the existing security frameworks used to prevent user input SQL injection; analysis was also done on the factors that lead to the detection of SQL injection. This knowledge-based framework is able to predict the end goal of any injected attack vector. (Known and unknown signatures). Experiments were conducted on true and simulation websites and open-source datasets to analyze the performance and a comparison drawn between the Autodect framework and other existing tools. The research showed that Autodect framework has an accuracy level of 0.98. The research found a gap that all existing tools and frameworks never came up with a standard datasets for sql injection, neither do we have a universally accepted standard data set.","PeriodicalId":50636,"journal":{"name":"Computer Science and Information Systems","volume":"77 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automation-Based User Input Sql Injection Detection and Prevention Framework\",\"authors\":\"Fredrick Ochieng Okello, D. Kaburu, Ndia G. John\",\"doi\":\"10.5539/cis.v16n2p51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autodect framework protects management information systems (MIS) and databases from user input SQL injection attacks. This framework overcomes intrusion or penetration into the system by automatically detecting and preventing attacks from the user input end. The attack intentions is also known since it is linked to a proxy database, which has a normal and abnormal code vector profiles that helps to gather information about the intent as well as knowing the areas of interest while conducting the attack. The information about the attack is forwarded to Autodect knowledge base (database), meaning that any successive attacks from the proxy database will be compared to the existing attack pattern logs in the knowledge base, in future this knowledge base-driven database will help organizations to analyze trends of attackers, profile them and deter them. The research evaluated the existing security frameworks used to prevent user input SQL injection; analysis was also done on the factors that lead to the detection of SQL injection. This knowledge-based framework is able to predict the end goal of any injected attack vector. (Known and unknown signatures). Experiments were conducted on true and simulation websites and open-source datasets to analyze the performance and a comparison drawn between the Autodect framework and other existing tools. The research showed that Autodect framework has an accuracy level of 0.98. The research found a gap that all existing tools and frameworks never came up with a standard datasets for sql injection, neither do we have a universally accepted standard data set.\",\"PeriodicalId\":50636,\"journal\":{\"name\":\"Computer Science and Information Systems\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5539/cis.v16n2p51\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5539/cis.v16n2p51","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Automation-Based User Input Sql Injection Detection and Prevention Framework
Autodect framework protects management information systems (MIS) and databases from user input SQL injection attacks. This framework overcomes intrusion or penetration into the system by automatically detecting and preventing attacks from the user input end. The attack intentions is also known since it is linked to a proxy database, which has a normal and abnormal code vector profiles that helps to gather information about the intent as well as knowing the areas of interest while conducting the attack. The information about the attack is forwarded to Autodect knowledge base (database), meaning that any successive attacks from the proxy database will be compared to the existing attack pattern logs in the knowledge base, in future this knowledge base-driven database will help organizations to analyze trends of attackers, profile them and deter them. The research evaluated the existing security frameworks used to prevent user input SQL injection; analysis was also done on the factors that lead to the detection of SQL injection. This knowledge-based framework is able to predict the end goal of any injected attack vector. (Known and unknown signatures). Experiments were conducted on true and simulation websites and open-source datasets to analyze the performance and a comparison drawn between the Autodect framework and other existing tools. The research showed that Autodect framework has an accuracy level of 0.98. The research found a gap that all existing tools and frameworks never came up with a standard datasets for sql injection, neither do we have a universally accepted standard data set.
期刊介绍:
About the journal
Home page
Contact information
Aims and scope
Indexing information
Editorial policies
ComSIS consortium
Journal boards
Managing board
For authors
Information for contributors
Paper submission
Article submission through OJS
Copyright transfer form
Download section
For readers
Forthcoming articles
Current issue
Archive
Subscription
For reviewers
View and review submissions
News
Journal''s Facebook page
Call for special issue
New issue notification
Aims and scope
Computer Science and Information Systems (ComSIS) is an international refereed journal, published in Serbia. The objective of ComSIS is to communicate important research and development results in the areas of computer science, software engineering, and information systems.