神经网络在心音诊断瓣膜生理性心脏病中的应用

O. Mokhlessi, H. M. Rad, N. Mehrshad, A. Mokhlessi
{"title":"神经网络在心音诊断瓣膜生理性心脏病中的应用","authors":"O. Mokhlessi, H. M. Rad, N. Mehrshad, A. Mokhlessi","doi":"10.5923/J.AJBE.20110101.05","DOIUrl":null,"url":null,"abstract":"Classification of the sound heart into different valve-physiological heart disease categories is a complex pattern recognition task. In this paper application of various types of neural networks are introduced for diagnosing heart disease). At first a method is described for extracting useful features from the sound hearts and then a simple algorithm is introduced for heart sounds recognition. In fact, feature vectors are formed based on a wavelet decomposition of the sounds. The heart sound diseases are classified into normal heart sound and the other six valve physiological heart categories. Different types of artificial neural networks (ANNs) are used for this purpose. Those are Multilayer perceptron (MLP) with back propagation training algorithm, Elman Neural Network (ENN) and Radial Basis Function (RBF) Network. Expensive experimental results show an average recognition score of 81.25% to 96.42%.","PeriodicalId":7620,"journal":{"name":"American Journal of Biomedical Engineering","volume":"1 1","pages":"26-34"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Application of Neural Networks in Diagnosis of Valve Physiological Heart Disease from Heart Sounds\",\"authors\":\"O. Mokhlessi, H. M. Rad, N. Mehrshad, A. Mokhlessi\",\"doi\":\"10.5923/J.AJBE.20110101.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of the sound heart into different valve-physiological heart disease categories is a complex pattern recognition task. In this paper application of various types of neural networks are introduced for diagnosing heart disease). At first a method is described for extracting useful features from the sound hearts and then a simple algorithm is introduced for heart sounds recognition. In fact, feature vectors are formed based on a wavelet decomposition of the sounds. The heart sound diseases are classified into normal heart sound and the other six valve physiological heart categories. Different types of artificial neural networks (ANNs) are used for this purpose. Those are Multilayer perceptron (MLP) with back propagation training algorithm, Elman Neural Network (ENN) and Radial Basis Function (RBF) Network. Expensive experimental results show an average recognition score of 81.25% to 96.42%.\",\"PeriodicalId\":7620,\"journal\":{\"name\":\"American Journal of Biomedical Engineering\",\"volume\":\"1 1\",\"pages\":\"26-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.AJBE.20110101.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.AJBE.20110101.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

将健全的心脏划分为不同的瓣膜生理心脏病类别是一项复杂的模式识别任务。本文介绍了各类神经网络在心脏病诊断中的应用。首先描述了一种从心音中提取有用特征的方法,然后介绍了一种简单的心音识别算法。实际上,特征向量是基于声音的小波分解而形成的。心音疾病分为正常心音和其他六种瓣膜生理性心音。不同类型的人工神经网络(ann)用于此目的。它们是具有反向传播训练算法的多层感知器(MLP)、Elman神经网络(ENN)和径向基函数(RBF)网络。昂贵的实验结果表明,平均识别率为81.25% ~ 96.42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Neural Networks in Diagnosis of Valve Physiological Heart Disease from Heart Sounds
Classification of the sound heart into different valve-physiological heart disease categories is a complex pattern recognition task. In this paper application of various types of neural networks are introduced for diagnosing heart disease). At first a method is described for extracting useful features from the sound hearts and then a simple algorithm is introduced for heart sounds recognition. In fact, feature vectors are formed based on a wavelet decomposition of the sounds. The heart sound diseases are classified into normal heart sound and the other six valve physiological heart categories. Different types of artificial neural networks (ANNs) are used for this purpose. Those are Multilayer perceptron (MLP) with back propagation training algorithm, Elman Neural Network (ENN) and Radial Basis Function (RBF) Network. Expensive experimental results show an average recognition score of 81.25% to 96.42%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信