{"title":"薄壁组合截面组件综述","authors":"Mantas Stulpinas","doi":"10.3846/mla.2023.16914","DOIUrl":null,"url":null,"abstract":"The goal of this research is to review the methods of assembly of the thin-walled built-up cross-sections, cross-section shapes and shape selection reasons. Different author’s experimental studies of the thin-walled built-up cross-sections of various lengths and shapes have been reviewed. The cross-section of the thin-walled built-up columns is assembled by connecting two or more profiles at their webs or flanges. The cross-section can be assembled indirectly – by using intermediate plates. The connections of the profiles and plates can be self-drilling screws, bolts, rivets or welds. The step of the thin-walled profile connections has an impact to the load bearing resistance of the cross-section. The increase to the load bearing capacity of the cross-section can be up to 16% when profiles without stiffeners are connected with a smaller connection step. The effect to the load bearing resistance of the decrease of the connection step length of the thin-walled cross-sections made of profiles with stiffeners was insignificant and sometimes unfavourable. Different cross-sections were analysed, and their effectiveness was compared. The more effective were cross-sections with a higher cross-section height and width, assembled of profiles with web and flange stiffeners. The ratio of the strength of the axial compression to the cross-section area of the built-up columns can be up to 80% higher when built-up cross-section is assembled using profiles with stiffeners, compared to the built-up cross-sections assembled using profiles without stiffeners.","PeriodicalId":30324,"journal":{"name":"Mokslas Lietuvos Ateitis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A REVIEW OF THIN-WALLED BUILT-UP CROSS-SECTION ASSEMBLIES\",\"authors\":\"Mantas Stulpinas\",\"doi\":\"10.3846/mla.2023.16914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this research is to review the methods of assembly of the thin-walled built-up cross-sections, cross-section shapes and shape selection reasons. Different author’s experimental studies of the thin-walled built-up cross-sections of various lengths and shapes have been reviewed. The cross-section of the thin-walled built-up columns is assembled by connecting two or more profiles at their webs or flanges. The cross-section can be assembled indirectly – by using intermediate plates. The connections of the profiles and plates can be self-drilling screws, bolts, rivets or welds. The step of the thin-walled profile connections has an impact to the load bearing resistance of the cross-section. The increase to the load bearing capacity of the cross-section can be up to 16% when profiles without stiffeners are connected with a smaller connection step. The effect to the load bearing resistance of the decrease of the connection step length of the thin-walled cross-sections made of profiles with stiffeners was insignificant and sometimes unfavourable. Different cross-sections were analysed, and their effectiveness was compared. The more effective were cross-sections with a higher cross-section height and width, assembled of profiles with web and flange stiffeners. The ratio of the strength of the axial compression to the cross-section area of the built-up columns can be up to 80% higher when built-up cross-section is assembled using profiles with stiffeners, compared to the built-up cross-sections assembled using profiles without stiffeners.\",\"PeriodicalId\":30324,\"journal\":{\"name\":\"Mokslas Lietuvos Ateitis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mokslas Lietuvos Ateitis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/mla.2023.16914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mokslas Lietuvos Ateitis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/mla.2023.16914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A REVIEW OF THIN-WALLED BUILT-UP CROSS-SECTION ASSEMBLIES
The goal of this research is to review the methods of assembly of the thin-walled built-up cross-sections, cross-section shapes and shape selection reasons. Different author’s experimental studies of the thin-walled built-up cross-sections of various lengths and shapes have been reviewed. The cross-section of the thin-walled built-up columns is assembled by connecting two or more profiles at their webs or flanges. The cross-section can be assembled indirectly – by using intermediate plates. The connections of the profiles and plates can be self-drilling screws, bolts, rivets or welds. The step of the thin-walled profile connections has an impact to the load bearing resistance of the cross-section. The increase to the load bearing capacity of the cross-section can be up to 16% when profiles without stiffeners are connected with a smaller connection step. The effect to the load bearing resistance of the decrease of the connection step length of the thin-walled cross-sections made of profiles with stiffeners was insignificant and sometimes unfavourable. Different cross-sections were analysed, and their effectiveness was compared. The more effective were cross-sections with a higher cross-section height and width, assembled of profiles with web and flange stiffeners. The ratio of the strength of the axial compression to the cross-section area of the built-up columns can be up to 80% higher when built-up cross-section is assembled using profiles with stiffeners, compared to the built-up cross-sections assembled using profiles without stiffeners.