利用10t强磁场选择性生长金属单壁碳纳米管

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
A. Hamasaki, A. Furuse, Jin Uchimura, Yasumasa Takashima, S. Ozeki
{"title":"利用10t强磁场选择性生长金属单壁碳纳米管","authors":"A. Hamasaki, A. Furuse, Jin Uchimura, Yasumasa Takashima, S. Ozeki","doi":"10.3233/jae-220186","DOIUrl":null,"url":null,"abstract":"The structure of carbon materials can be controlled using a magnetic field, enhancing their functional properties. Most of the magnetic-field effects on carbon material growth were found to originate from the magnetic-field orientation. However, we observed that the magnetic-field orientation did not affect the growth of single-walled carbon nanotubes (SWCNTs); instead, under a magnetic field of 10 T, the preferential growth of metallic SWCNTs (1-nm diameter) was observed using chemical vapor deposition and liquid decomposition, suggesting chirality selectivity. Raman and X-ray photoelectron spectra showed that the defect structure and oxygen content of SWCNTs increased with increasing magnetic-field intensity. Therefore, thin metallic nanotubes can be selectively grown by applying a high magnetic field in environments where nanotubes are relatively difficult to form.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"20 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective growth of metallic single-walled carbon nanotubes via the application of high magnetic fields of 10 T\",\"authors\":\"A. Hamasaki, A. Furuse, Jin Uchimura, Yasumasa Takashima, S. Ozeki\",\"doi\":\"10.3233/jae-220186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structure of carbon materials can be controlled using a magnetic field, enhancing their functional properties. Most of the magnetic-field effects on carbon material growth were found to originate from the magnetic-field orientation. However, we observed that the magnetic-field orientation did not affect the growth of single-walled carbon nanotubes (SWCNTs); instead, under a magnetic field of 10 T, the preferential growth of metallic SWCNTs (1-nm diameter) was observed using chemical vapor deposition and liquid decomposition, suggesting chirality selectivity. Raman and X-ray photoelectron spectra showed that the defect structure and oxygen content of SWCNTs increased with increasing magnetic-field intensity. Therefore, thin metallic nanotubes can be selectively grown by applying a high magnetic field in environments where nanotubes are relatively difficult to form.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-220186\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-220186","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

利用磁场可以控制碳材料的结构,增强其功能特性。研究发现,磁场对碳材料生长的影响主要来源于磁场取向。然而,我们观察到磁场取向不影响单壁碳纳米管(SWCNTs)的生长;相反,在10 T的磁场下,通过化学气相沉积和液体分解,观察到金属SWCNTs(直径为1 nm)优先生长,表明具有手性选择性。拉曼光谱和x射线光电子能谱显示,SWCNTs的缺陷结构和氧含量随磁场强度的增加而增加。因此,在纳米管相对难以形成的环境中,通过施加高磁场可以选择性地生长薄金属纳米管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selective growth of metallic single-walled carbon nanotubes via the application of high magnetic fields of 10 T
The structure of carbon materials can be controlled using a magnetic field, enhancing their functional properties. Most of the magnetic-field effects on carbon material growth were found to originate from the magnetic-field orientation. However, we observed that the magnetic-field orientation did not affect the growth of single-walled carbon nanotubes (SWCNTs); instead, under a magnetic field of 10 T, the preferential growth of metallic SWCNTs (1-nm diameter) was observed using chemical vapor deposition and liquid decomposition, suggesting chirality selectivity. Raman and X-ray photoelectron spectra showed that the defect structure and oxygen content of SWCNTs increased with increasing magnetic-field intensity. Therefore, thin metallic nanotubes can be selectively grown by applying a high magnetic field in environments where nanotubes are relatively difficult to form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信