基于半监督语义分割的垃圾回收厂无关目标识别

C. Domínguez, Jónathan Heras, Eloy J. Mata, Vico Pascual, Lucas Fernández-Cedrón, Marcos Martínez-Lanchares, Jon Pellejero-Espinosa, Antonio Rubio-Loscertales, C. Tarragona-Pérez
{"title":"基于半监督语义分割的垃圾回收厂无关目标识别","authors":"C. Domínguez, Jónathan Heras, Eloy J. Mata, Vico Pascual, Lucas Fernández-Cedrón, Marcos Martínez-Lanchares, Jon Pellejero-Espinosa, Antonio Rubio-Loscertales, C. Tarragona-Pérez","doi":"10.2139/ssrn.4116055","DOIUrl":null,"url":null,"abstract":"In waste recycling plants, measuring the waste volume and weight at the beginning of the treatment process is key for a better management of resources. This task can be conducted by using orthophoto images, but it is necessary to remove from those images the objects, such as containers or trucks, that are not involved in the measurement process. This work proposes the application of deep learning for the semantic segmentation of those irrelevant objects. Several deep architectures are trained and compared, while three semi-supervised learning methods (PseudoLabeling, Distillation and Model Distillation) are proposed to take advantage of non-annotated images. In these experiments, the U-net++ architecture with an EfficientNetB3 backbone, trained with the set of labelled images, achieves the best overall multi Dice score of 91.23%. The application of semi-supervised learning methods further boosts the segmentation accuracy in a range between 1.31% and 2.59%, on average.","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"25 1","pages":"419-431"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Supervised Semantic Segmentation for Identification of Irrelevant Objects in a Waste Recycling Plant\",\"authors\":\"C. Domínguez, Jónathan Heras, Eloy J. Mata, Vico Pascual, Lucas Fernández-Cedrón, Marcos Martínez-Lanchares, Jon Pellejero-Espinosa, Antonio Rubio-Loscertales, C. Tarragona-Pérez\",\"doi\":\"10.2139/ssrn.4116055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In waste recycling plants, measuring the waste volume and weight at the beginning of the treatment process is key for a better management of resources. This task can be conducted by using orthophoto images, but it is necessary to remove from those images the objects, such as containers or trucks, that are not involved in the measurement process. This work proposes the application of deep learning for the semantic segmentation of those irrelevant objects. Several deep architectures are trained and compared, while three semi-supervised learning methods (PseudoLabeling, Distillation and Model Distillation) are proposed to take advantage of non-annotated images. In these experiments, the U-net++ architecture with an EfficientNetB3 backbone, trained with the set of labelled images, achieves the best overall multi Dice score of 91.23%. The application of semi-supervised learning methods further boosts the segmentation accuracy in a range between 1.31% and 2.59%, on average.\",\"PeriodicalId\":14652,\"journal\":{\"name\":\"J. Univers. Comput. Sci.\",\"volume\":\"25 1\",\"pages\":\"419-431\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Univers. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4116055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Univers. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4116055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在废物回收厂,在处理过程开始时测量废物体积和重量是更好地管理资源的关键。这项任务可以通过使用正射影像来完成,但有必要从这些图像中去除不涉及测量过程的物体,如集装箱或卡车。这项工作提出了将深度学习应用于这些不相关对象的语义分割。对几种深度架构进行了训练和比较,同时提出了三种半监督学习方法(伪标记、蒸馏和模型蒸馏)来利用未注释的图像。在这些实验中,采用高效率netb3主干的unet++架构,在标记图像集的训练下,获得了91.23%的最佳整体多Dice分数。半监督学习方法的应用进一步提高了分割准确率,平均在1.31% ~ 2.59%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Supervised Semantic Segmentation for Identification of Irrelevant Objects in a Waste Recycling Plant
In waste recycling plants, measuring the waste volume and weight at the beginning of the treatment process is key for a better management of resources. This task can be conducted by using orthophoto images, but it is necessary to remove from those images the objects, such as containers or trucks, that are not involved in the measurement process. This work proposes the application of deep learning for the semantic segmentation of those irrelevant objects. Several deep architectures are trained and compared, while three semi-supervised learning methods (PseudoLabeling, Distillation and Model Distillation) are proposed to take advantage of non-annotated images. In these experiments, the U-net++ architecture with an EfficientNetB3 backbone, trained with the set of labelled images, achieves the best overall multi Dice score of 91.23%. The application of semi-supervised learning methods further boosts the segmentation accuracy in a range between 1.31% and 2.59%, on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信