{"title":"甲苯填充空心光子晶体光纤色散的优化","authors":"D. Hoang, Minh Thong Hoang, Thi Thuy Nhung Nguyen","doi":"10.26459/hueunijns.v132i1b.6833","DOIUrl":null,"url":null,"abstract":"In this work, we thoroughly investigated the dispersion in SiO2-based photonic crystal fibers with a C7H8-infiltrated hollow core. By cleverly modifying the air hole diameters and lattice constants in the structural design, we achieved ultra-flat near-zero dispersion as small as 0.462 ps·nm–1·km–1 and diverse dispersion properties of PCFs, very beneficial for supercontinuum generation. Based on the simulation results, we propose three optimal structures with small and flat dispersion capable of generating a broad and smooth supercontinuum spectrum. The results of our study can be advantageous for fabricating fibers in low-cost all-fiber laser systems.","PeriodicalId":13004,"journal":{"name":"Hue University Journal of Science: Natural Science","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of dispersion in hollow-core photonic crystal fibers filled with toluene\",\"authors\":\"D. Hoang, Minh Thong Hoang, Thi Thuy Nhung Nguyen\",\"doi\":\"10.26459/hueunijns.v132i1b.6833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we thoroughly investigated the dispersion in SiO2-based photonic crystal fibers with a C7H8-infiltrated hollow core. By cleverly modifying the air hole diameters and lattice constants in the structural design, we achieved ultra-flat near-zero dispersion as small as 0.462 ps·nm–1·km–1 and diverse dispersion properties of PCFs, very beneficial for supercontinuum generation. Based on the simulation results, we propose three optimal structures with small and flat dispersion capable of generating a broad and smooth supercontinuum spectrum. The results of our study can be advantageous for fabricating fibers in low-cost all-fiber laser systems.\",\"PeriodicalId\":13004,\"journal\":{\"name\":\"Hue University Journal of Science: Natural Science\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hue University Journal of Science: Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26459/hueunijns.v132i1b.6833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hue University Journal of Science: Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26459/hueunijns.v132i1b.6833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of dispersion in hollow-core photonic crystal fibers filled with toluene
In this work, we thoroughly investigated the dispersion in SiO2-based photonic crystal fibers with a C7H8-infiltrated hollow core. By cleverly modifying the air hole diameters and lattice constants in the structural design, we achieved ultra-flat near-zero dispersion as small as 0.462 ps·nm–1·km–1 and diverse dispersion properties of PCFs, very beneficial for supercontinuum generation. Based on the simulation results, we propose three optimal structures with small and flat dispersion capable of generating a broad and smooth supercontinuum spectrum. The results of our study can be advantageous for fabricating fibers in low-cost all-fiber laser systems.