{"title":"基于位置的社交网络的多模态交互感知嵌入","authors":"Ruiyun Yu, Kang Yang, Zhihong Wang, Shi Zhen","doi":"10.3233/aic-220161","DOIUrl":null,"url":null,"abstract":"Location-based social networks (LBSNs) have greatly promoted the development of the field of human mobility mining. However, the sparsity, multimodality and heterogeneity nature of the user check-in data remains a great concern for learning high-quality user or other entities representations, especially in the downstream application tasks, such as point-of-interest (POI) recommendation. Most existing methods focus on user preference modeling based on sequential POI tags without exploring the interaction between different modalities (e.g., user-user interactions, user-timestamp interactions, user-POI interactions, etc.). To this end, we introduce a multimodal interaction aware embedding framework to generate reliable entity embeddings on the heterogeneous socio-spatial network. At its core, first, multi-modal interaction sub-graph sampling techniques are designed to capture the heterogeneous contexts; then, a self-supervised contrastive learning technique is leveraged to extract intra-modality and inter-modality interactions in a light way. We conduct experiments on the next-POI recommendation tasks based on three real-world datasets. Experimental results demonstrate the superiority of our model over the state-of-the-art embedding learning algorithms.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"1 1","pages":"41-55"},"PeriodicalIF":1.4000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal interaction aware embedding for location-based social networks\",\"authors\":\"Ruiyun Yu, Kang Yang, Zhihong Wang, Shi Zhen\",\"doi\":\"10.3233/aic-220161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Location-based social networks (LBSNs) have greatly promoted the development of the field of human mobility mining. However, the sparsity, multimodality and heterogeneity nature of the user check-in data remains a great concern for learning high-quality user or other entities representations, especially in the downstream application tasks, such as point-of-interest (POI) recommendation. Most existing methods focus on user preference modeling based on sequential POI tags without exploring the interaction between different modalities (e.g., user-user interactions, user-timestamp interactions, user-POI interactions, etc.). To this end, we introduce a multimodal interaction aware embedding framework to generate reliable entity embeddings on the heterogeneous socio-spatial network. At its core, first, multi-modal interaction sub-graph sampling techniques are designed to capture the heterogeneous contexts; then, a self-supervised contrastive learning technique is leveraged to extract intra-modality and inter-modality interactions in a light way. We conduct experiments on the next-POI recommendation tasks based on three real-world datasets. Experimental results demonstrate the superiority of our model over the state-of-the-art embedding learning algorithms.\",\"PeriodicalId\":50835,\"journal\":{\"name\":\"AI Communications\",\"volume\":\"1 1\",\"pages\":\"41-55\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/aic-220161\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-220161","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multimodal interaction aware embedding for location-based social networks
Location-based social networks (LBSNs) have greatly promoted the development of the field of human mobility mining. However, the sparsity, multimodality and heterogeneity nature of the user check-in data remains a great concern for learning high-quality user or other entities representations, especially in the downstream application tasks, such as point-of-interest (POI) recommendation. Most existing methods focus on user preference modeling based on sequential POI tags without exploring the interaction between different modalities (e.g., user-user interactions, user-timestamp interactions, user-POI interactions, etc.). To this end, we introduce a multimodal interaction aware embedding framework to generate reliable entity embeddings on the heterogeneous socio-spatial network. At its core, first, multi-modal interaction sub-graph sampling techniques are designed to capture the heterogeneous contexts; then, a self-supervised contrastive learning technique is leveraged to extract intra-modality and inter-modality interactions in a light way. We conduct experiments on the next-POI recommendation tasks based on three real-world datasets. Experimental results demonstrate the superiority of our model over the state-of-the-art embedding learning algorithms.
期刊介绍:
AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies.
AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.