{"title":"乳腺癌人群的高精度分类:SVM方法","authors":"Philip de Melo, M. Davtyan","doi":"10.11648/j.crj.20231103.13","DOIUrl":null,"url":null,"abstract":": Breast cancer is one of the most common cancers diagnosed in the United States. Breast cancer can occur in both men and women. The number of deaths associated with this disease is steadily declining, largely due to factors such as earlier detection and a new personalized approach to treatment. In this article, we offer a highly accurate and reliable classification approach based on feature engineering and an improved support vector machine (SVM) classifier. We examine a dataset with 30 features and use in-depth data analytics and visualization to pinpoint the top nine features that have a significant impact on classification accuracy. The SVM classification outperformed other classifiers, including kernel extensions, with a high accuracy of 99.12%. The study stresses the value of machine learning in medical diagnosis, notably in the early detection of breast cancer","PeriodicalId":9422,"journal":{"name":"Cancer Research Journal","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Accuracy Classification of Populations with Breast Cancer: SVM Approach\",\"authors\":\"Philip de Melo, M. Davtyan\",\"doi\":\"10.11648/j.crj.20231103.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Breast cancer is one of the most common cancers diagnosed in the United States. Breast cancer can occur in both men and women. The number of deaths associated with this disease is steadily declining, largely due to factors such as earlier detection and a new personalized approach to treatment. In this article, we offer a highly accurate and reliable classification approach based on feature engineering and an improved support vector machine (SVM) classifier. We examine a dataset with 30 features and use in-depth data analytics and visualization to pinpoint the top nine features that have a significant impact on classification accuracy. The SVM classification outperformed other classifiers, including kernel extensions, with a high accuracy of 99.12%. The study stresses the value of machine learning in medical diagnosis, notably in the early detection of breast cancer\",\"PeriodicalId\":9422,\"journal\":{\"name\":\"Cancer Research Journal\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.crj.20231103.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.crj.20231103.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Accuracy Classification of Populations with Breast Cancer: SVM Approach
: Breast cancer is one of the most common cancers diagnosed in the United States. Breast cancer can occur in both men and women. The number of deaths associated with this disease is steadily declining, largely due to factors such as earlier detection and a new personalized approach to treatment. In this article, we offer a highly accurate and reliable classification approach based on feature engineering and an improved support vector machine (SVM) classifier. We examine a dataset with 30 features and use in-depth data analytics and visualization to pinpoint the top nine features that have a significant impact on classification accuracy. The SVM classification outperformed other classifiers, including kernel extensions, with a high accuracy of 99.12%. The study stresses the value of machine learning in medical diagnosis, notably in the early detection of breast cancer