Prashansa Mukim, Aditya Dalakoti, D. McCarthy, Brandon Pon, Carrie Segal, Merritt Miller, J. Buckwalter, F. Brewer
{"title":"分布式脉冲旋转行波压控振荡器:结构与设计","authors":"Prashansa Mukim, Aditya Dalakoti, D. McCarthy, Brandon Pon, Carrie Segal, Merritt Miller, J. Buckwalter, F. Brewer","doi":"10.1109/ISVLSI.2019.00051","DOIUrl":null,"url":null,"abstract":"This paper describes the architecture and design of pulse rotary traveling wave voltage controlled oscillators that preserve wave shape, and thus wave harmonics using non-linear amplification. These oscillators can provide multiple low dutycycle clock phases and architectural modifications can allow for the same clock phase to be present at multiple physical locations. A design fabricated in GFUS 130nm (8RF) technology operates at 5.32 GHz with a 10 MHz offset phase noise of -128.15 dBc/Hz at 45.4 mW while generating 12 driven phase outputs with 15.66 ps phase resolution and less than 500 fs cycle-to-cycle jitter. It can be coarse or fine tuned within a frequency range of 4.35 GHz to 5.4 GHz with KV CO of 1.7 GHz/V and 470 MHz/V respectively. The start-up mechanism of the oscillator minimizes transmission line reflections and allows maintenance of the traveling wave shape, yielding an average 3 dB figure of merit improvement over existing designs.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"18 1","pages":"235-240"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Pulse Rotary Traveling Wave VCO: Architecture and Design\",\"authors\":\"Prashansa Mukim, Aditya Dalakoti, D. McCarthy, Brandon Pon, Carrie Segal, Merritt Miller, J. Buckwalter, F. Brewer\",\"doi\":\"10.1109/ISVLSI.2019.00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the architecture and design of pulse rotary traveling wave voltage controlled oscillators that preserve wave shape, and thus wave harmonics using non-linear amplification. These oscillators can provide multiple low dutycycle clock phases and architectural modifications can allow for the same clock phase to be present at multiple physical locations. A design fabricated in GFUS 130nm (8RF) technology operates at 5.32 GHz with a 10 MHz offset phase noise of -128.15 dBc/Hz at 45.4 mW while generating 12 driven phase outputs with 15.66 ps phase resolution and less than 500 fs cycle-to-cycle jitter. It can be coarse or fine tuned within a frequency range of 4.35 GHz to 5.4 GHz with KV CO of 1.7 GHz/V and 470 MHz/V respectively. The start-up mechanism of the oscillator minimizes transmission line reflections and allows maintenance of the traveling wave shape, yielding an average 3 dB figure of merit improvement over existing designs.\",\"PeriodicalId\":6703,\"journal\":{\"name\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"18 1\",\"pages\":\"235-240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2019.00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed Pulse Rotary Traveling Wave VCO: Architecture and Design
This paper describes the architecture and design of pulse rotary traveling wave voltage controlled oscillators that preserve wave shape, and thus wave harmonics using non-linear amplification. These oscillators can provide multiple low dutycycle clock phases and architectural modifications can allow for the same clock phase to be present at multiple physical locations. A design fabricated in GFUS 130nm (8RF) technology operates at 5.32 GHz with a 10 MHz offset phase noise of -128.15 dBc/Hz at 45.4 mW while generating 12 driven phase outputs with 15.66 ps phase resolution and less than 500 fs cycle-to-cycle jitter. It can be coarse or fine tuned within a frequency range of 4.35 GHz to 5.4 GHz with KV CO of 1.7 GHz/V and 470 MHz/V respectively. The start-up mechanism of the oscillator minimizes transmission line reflections and allows maintenance of the traveling wave shape, yielding an average 3 dB figure of merit improvement over existing designs.