Jie Teng, Fang Liu, Li Chang, Qiu-xia Yang, Guanglu Che, Shuyu Lai, Yuan Tan, Jiaxin Duan, Yongmei Jiang
{"title":"基于rna的等温扩增技术及其在病原体感染中的临床应用","authors":"Jie Teng, Fang Liu, Li Chang, Qiu-xia Yang, Guanglu Che, Shuyu Lai, Yuan Tan, Jiaxin Duan, Yongmei Jiang","doi":"10.1515/revac-2022-0051","DOIUrl":null,"url":null,"abstract":"Abstract It is very important to detect pathogenic bacteria, viruses, or fungi in a patient’s secretion or body fluid samples as soon as possible to determine the patient’s recovery. For certain pathogens, the amount of ribosomal RNA copies contained is often tens of thousands of times higher than the amount of DNA copies, so the detection of RNA has higher sensitivity. In addition, whether for DNA pathogens or RNA pathogens, the direct detection of ribonucleic acid transcribed by pathogens in vivo can distinguish active infection or past infection, can eliminate the influence of residual DNA of pathogens that have died in the lesions, and can also avoid excessive medical interventions for transient infections, which is of great significance in the field of infectious pathogen detection. Isothermal amplification technology played important roles in molecular diagnosis because of its significant advantages. Highly sensitive RNA detection can be achieved by both direct transcription amplification and indirect amplification based on reverse transcription. Direct transcription amplification technologies relies on reverse transcriptase and T7 RNA polymerase to achieve linear transcription amplification of RNA on one-step; while the indirect amplification technology depends on a reverse transcriptional process at the beginning of the reaction. Both methods have outstanding advantages in clinical application, and commercial kits and commercial all-in-one machines based on these principles have been put into clinical use. This review mainly introduces the clinical application of isothermal amplification technologies in the detection of RNA pathogens and the main difficulties faced at this stage. It is hoped to provide insightful ideas for the construction of pathogen RNA detection technology to meet the needs of point-of-care testing in the future.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"1 1","pages":"301 - 313"},"PeriodicalIF":3.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA-based isothermal amplification technology and its clinical application in pathogen infection\",\"authors\":\"Jie Teng, Fang Liu, Li Chang, Qiu-xia Yang, Guanglu Che, Shuyu Lai, Yuan Tan, Jiaxin Duan, Yongmei Jiang\",\"doi\":\"10.1515/revac-2022-0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It is very important to detect pathogenic bacteria, viruses, or fungi in a patient’s secretion or body fluid samples as soon as possible to determine the patient’s recovery. For certain pathogens, the amount of ribosomal RNA copies contained is often tens of thousands of times higher than the amount of DNA copies, so the detection of RNA has higher sensitivity. In addition, whether for DNA pathogens or RNA pathogens, the direct detection of ribonucleic acid transcribed by pathogens in vivo can distinguish active infection or past infection, can eliminate the influence of residual DNA of pathogens that have died in the lesions, and can also avoid excessive medical interventions for transient infections, which is of great significance in the field of infectious pathogen detection. Isothermal amplification technology played important roles in molecular diagnosis because of its significant advantages. Highly sensitive RNA detection can be achieved by both direct transcription amplification and indirect amplification based on reverse transcription. Direct transcription amplification technologies relies on reverse transcriptase and T7 RNA polymerase to achieve linear transcription amplification of RNA on one-step; while the indirect amplification technology depends on a reverse transcriptional process at the beginning of the reaction. Both methods have outstanding advantages in clinical application, and commercial kits and commercial all-in-one machines based on these principles have been put into clinical use. This review mainly introduces the clinical application of isothermal amplification technologies in the detection of RNA pathogens and the main difficulties faced at this stage. It is hoped to provide insightful ideas for the construction of pathogen RNA detection technology to meet the needs of point-of-care testing in the future.\",\"PeriodicalId\":21090,\"journal\":{\"name\":\"Reviews in Analytical Chemistry\",\"volume\":\"1 1\",\"pages\":\"301 - 313\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/revac-2022-0051\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revac-2022-0051","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
RNA-based isothermal amplification technology and its clinical application in pathogen infection
Abstract It is very important to detect pathogenic bacteria, viruses, or fungi in a patient’s secretion or body fluid samples as soon as possible to determine the patient’s recovery. For certain pathogens, the amount of ribosomal RNA copies contained is often tens of thousands of times higher than the amount of DNA copies, so the detection of RNA has higher sensitivity. In addition, whether for DNA pathogens or RNA pathogens, the direct detection of ribonucleic acid transcribed by pathogens in vivo can distinguish active infection or past infection, can eliminate the influence of residual DNA of pathogens that have died in the lesions, and can also avoid excessive medical interventions for transient infections, which is of great significance in the field of infectious pathogen detection. Isothermal amplification technology played important roles in molecular diagnosis because of its significant advantages. Highly sensitive RNA detection can be achieved by both direct transcription amplification and indirect amplification based on reverse transcription. Direct transcription amplification technologies relies on reverse transcriptase and T7 RNA polymerase to achieve linear transcription amplification of RNA on one-step; while the indirect amplification technology depends on a reverse transcriptional process at the beginning of the reaction. Both methods have outstanding advantages in clinical application, and commercial kits and commercial all-in-one machines based on these principles have been put into clinical use. This review mainly introduces the clinical application of isothermal amplification technologies in the detection of RNA pathogens and the main difficulties faced at this stage. It is hoped to provide insightful ideas for the construction of pathogen RNA detection technology to meet the needs of point-of-care testing in the future.
期刊介绍:
Reviews in Analytical Chemistry publishes authoritative reviews by leading experts in the dynamic field of chemical analysis. The subjects can encompass all branches of modern analytical chemistry such as spectroscopy, chromatography, mass spectrometry, electrochemistry and trace analysis and their applications to areas such as environmental control, pharmaceutical industry, automation and other relevant areas. Review articles bring the expert up to date in a concise manner and provide researchers an overview of new techniques and methods.