无人机激光扫描、摄影测量和机载激光扫描在小森林属性精确清查中的比较

IF 3 2区 农林科学 Q1 FORESTRY
Forestry Pub Date : 2020-02-04 DOI:10.1093/forestry/cpz057
S. Puliti, Jonathan P. Dash, M. Watt, J. Breidenbach, Grant D. Pearse
{"title":"无人机激光扫描、摄影测量和机载激光扫描在小森林属性精确清查中的比较","authors":"S. Puliti, Jonathan P. Dash, M. Watt, J. Breidenbach, Grant D. Pearse","doi":"10.1093/forestry/cpz057","DOIUrl":null,"url":null,"abstract":"This study addresses the use of multiple sources of auxiliary data from unmanned aerial vehicles (UAVs) and airborne laser scanning (ALS) data for inference on key biophysical parameters in small forest properties (5–300 ha). We compared the precision of the estimates using plot data alone under a design-based inference with model-based estimates that include plot data and the following four types of auxiliary data: (1) terrain-independent variables from UAV photogrammetric data (UAV-SfM); (2) variables obtained from UAV photogrammetric data normalized using external terrain data (UAV-SfMDTM); (3) UAV-LS and (4) ALS data. The inclusion of remotely sensed data increased the precision of DB estimates by factors of 1.5–2.2. The optimal data sources for top height, stem density, basal area and total stem volume were: UAV-LS, UAV-SfM, UAV-SfMDTM and UAV-SfMDTM. We conclude that the use of UAV data can increase the precision of stand-level estimates even under intensive field sampling conditions.","PeriodicalId":12342,"journal":{"name":"Forestry","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"A comparison of UAV laser scanning, photogrammetry and airborne laser scanning for precision inventory of small-forest properties\",\"authors\":\"S. Puliti, Jonathan P. Dash, M. Watt, J. Breidenbach, Grant D. Pearse\",\"doi\":\"10.1093/forestry/cpz057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study addresses the use of multiple sources of auxiliary data from unmanned aerial vehicles (UAVs) and airborne laser scanning (ALS) data for inference on key biophysical parameters in small forest properties (5–300 ha). We compared the precision of the estimates using plot data alone under a design-based inference with model-based estimates that include plot data and the following four types of auxiliary data: (1) terrain-independent variables from UAV photogrammetric data (UAV-SfM); (2) variables obtained from UAV photogrammetric data normalized using external terrain data (UAV-SfMDTM); (3) UAV-LS and (4) ALS data. The inclusion of remotely sensed data increased the precision of DB estimates by factors of 1.5–2.2. The optimal data sources for top height, stem density, basal area and total stem volume were: UAV-LS, UAV-SfM, UAV-SfMDTM and UAV-SfMDTM. We conclude that the use of UAV data can increase the precision of stand-level estimates even under intensive field sampling conditions.\",\"PeriodicalId\":12342,\"journal\":{\"name\":\"Forestry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forestry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/forestry/cpz057\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forestry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/forestry/cpz057","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 42

摘要

本研究解决了使用来自无人机(uav)和机载激光扫描(ALS)数据的多个辅助数据来源来推断小型森林属性(5-300公顷)的关键生物物理参数的问题。我们比较了在基于设计的推理下仅使用地块数据的估计精度与包含地块数据和以下四种辅助数据的基于模型的估计精度:(1)来自无人机摄影测量数据(UAV- sfm)的地形无关变量;(2)利用外部地形数据(UAV- sfmdtm)归一化的无人机摄影测量数据得到的变量;(3) UAV-LS和(4)ALS数据。遥感数据的加入使DB估计的精度提高了1.5-2.2倍。茎高、茎密度、基部面积和茎总积的最佳数据源为:UAV-LS、UAV-SfM、UAV-SfMDTM和UAV-SfMDTM。我们得出结论,即使在密集的野外采样条件下,使用无人机数据也可以提高林分水平估计的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of UAV laser scanning, photogrammetry and airborne laser scanning for precision inventory of small-forest properties
This study addresses the use of multiple sources of auxiliary data from unmanned aerial vehicles (UAVs) and airborne laser scanning (ALS) data for inference on key biophysical parameters in small forest properties (5–300 ha). We compared the precision of the estimates using plot data alone under a design-based inference with model-based estimates that include plot data and the following four types of auxiliary data: (1) terrain-independent variables from UAV photogrammetric data (UAV-SfM); (2) variables obtained from UAV photogrammetric data normalized using external terrain data (UAV-SfMDTM); (3) UAV-LS and (4) ALS data. The inclusion of remotely sensed data increased the precision of DB estimates by factors of 1.5–2.2. The optimal data sources for top height, stem density, basal area and total stem volume were: UAV-LS, UAV-SfM, UAV-SfMDTM and UAV-SfMDTM. We conclude that the use of UAV data can increase the precision of stand-level estimates even under intensive field sampling conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forestry
Forestry 农林科学-林学
CiteScore
6.70
自引率
7.10%
发文量
47
审稿时长
12-24 weeks
期刊介绍: The journal is inclusive of all subjects, geographical zones and study locations, including trees in urban environments, plantations and natural forests. We welcome papers that consider economic, environmental and social factors and, in particular, studies that take an integrated approach to sustainable management. In considering suitability for publication, attention is given to the originality of contributions and their likely impact on policy and practice, as well as their contribution to the development of knowledge. Special Issues - each year one edition of Forestry will be a Special Issue and will focus on one subject in detail; this will usually be by publication of the proceedings of an international meeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信