基于rbfnn的执行器故障及速度约束地铁列车自适应迭代学习容错控制

Genfeng Liu, Z. Hou
{"title":"基于rbfnn的执行器故障及速度约束地铁列车自适应迭代学习容错控制","authors":"Genfeng Liu, Z. Hou","doi":"10.1109/TSMC.2019.2957299","DOIUrl":null,"url":null,"abstract":"In this article, a radial basis function neural network-based adaptive iterative learning fault-tolerant control (RBFNN-AILFTC) algorithm is developed for subway trains subject to the time-iteration-dependent actuator faults and speed constraint by using the multiple-point-mass dynamic model. First, the RBFNN is utilized to approximate the time-iteration-dependent unknown nonlinearity of the subway train system; then, the iterative learning mechanism is used to tackle the outstanding repetitive operational pattern of a subway train which runs from one station to the next strictly according to the operation timetable schedule every day within the finite time interval, and the adaptive mechanism is designed for dealing with the time and the iteration-varying factors of the subway train. Second, a barrier composite energy function technique is exploited to obtain the convergence property of the proposed RBFNN-AILFTC scheme for subway train system, which can guarantee that the tracking error is asymptotic convergence along the iteration axis, meanwhile keep the speed profile of the subway train system satisfies the constraint. Finally, a subway train simulation is shown to verify the effectiveness of the theoretical studies.","PeriodicalId":55007,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","volume":"107 1","pages":"5785-5799"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"RBFNN-Based Adaptive Iterative Learning Fault-Tolerant Control for Subway Trains With Actuator Faults and Speed Constraint\",\"authors\":\"Genfeng Liu, Z. Hou\",\"doi\":\"10.1109/TSMC.2019.2957299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a radial basis function neural network-based adaptive iterative learning fault-tolerant control (RBFNN-AILFTC) algorithm is developed for subway trains subject to the time-iteration-dependent actuator faults and speed constraint by using the multiple-point-mass dynamic model. First, the RBFNN is utilized to approximate the time-iteration-dependent unknown nonlinearity of the subway train system; then, the iterative learning mechanism is used to tackle the outstanding repetitive operational pattern of a subway train which runs from one station to the next strictly according to the operation timetable schedule every day within the finite time interval, and the adaptive mechanism is designed for dealing with the time and the iteration-varying factors of the subway train. Second, a barrier composite energy function technique is exploited to obtain the convergence property of the proposed RBFNN-AILFTC scheme for subway train system, which can guarantee that the tracking error is asymptotic convergence along the iteration axis, meanwhile keep the speed profile of the subway train system satisfies the constraint. Finally, a subway train simulation is shown to verify the effectiveness of the theoretical studies.\",\"PeriodicalId\":55007,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans\",\"volume\":\"107 1\",\"pages\":\"5785-5799\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMC.2019.2957299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMC.2019.2957299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文采用多点质量动力学模型,针对地铁列车执行器故障与速度约束随时间迭代变化的特点,提出了一种基于径向基函数神经网络的自适应迭代学习容错控制算法。首先,利用RBFNN逼近地铁列车系统随时间迭代的未知非线性;然后,采用迭代学习机制解决地铁列车在有限的时间间隔内每天严格按照运行时刻表从一站到下一站的突出重复运行模式,并设计自适应机制处理地铁列车的时间和迭代变化因素。其次,利用势垒复合能量函数技术得到了所提出的地铁列车系统RBFNN-AILFTC方案的收敛性,该方案可以保证跟踪误差沿迭代轴渐近收敛,同时保持地铁列车系统的速度轮廓满足约束;最后,通过地铁列车仿真验证了理论研究的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RBFNN-Based Adaptive Iterative Learning Fault-Tolerant Control for Subway Trains With Actuator Faults and Speed Constraint
In this article, a radial basis function neural network-based adaptive iterative learning fault-tolerant control (RBFNN-AILFTC) algorithm is developed for subway trains subject to the time-iteration-dependent actuator faults and speed constraint by using the multiple-point-mass dynamic model. First, the RBFNN is utilized to approximate the time-iteration-dependent unknown nonlinearity of the subway train system; then, the iterative learning mechanism is used to tackle the outstanding repetitive operational pattern of a subway train which runs from one station to the next strictly according to the operation timetable schedule every day within the finite time interval, and the adaptive mechanism is designed for dealing with the time and the iteration-varying factors of the subway train. Second, a barrier composite energy function technique is exploited to obtain the convergence property of the proposed RBFNN-AILFTC scheme for subway train system, which can guarantee that the tracking error is asymptotic convergence along the iteration axis, meanwhile keep the speed profile of the subway train system satisfies the constraint. Finally, a subway train simulation is shown to verify the effectiveness of the theoretical studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
6.0 months
期刊介绍: The scope of the IEEE Transactions on Systems, Man, and Cybernetics: Systems includes the fields of systems engineering. It includes issue formulation, analysis and modeling, decision making, and issue interpretation for any of the systems engineering lifecycle phases associated with the definition, development, and deployment of large systems. In addition, it includes systems management, systems engineering processes, and a variety of systems engineering methods such as optimization, modeling and simulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信