克服线性回归模型多重共线性问题不同方法的比较

H. Gorgees, F. Mahdi
{"title":"克服线性回归模型多重共线性问题不同方法的比较","authors":"H. Gorgees, F. Mahdi","doi":"10.30526/31.1.1841","DOIUrl":null,"url":null,"abstract":"In the presence of multi-collinearity problem, the parameter estimation method based on the ordinary least squares procedure is unsatisfactory. In 1970, Hoerl and Kennard insert analternative method labeled as estimator of ridge regression. \nIn such estimator, ridge parameter plays an important role in estimation. Various methods were proposed by many statisticians to select the biasing constant (ridge parameter). Another popular method that is used to deal with the multi-collinearity problem is the principal component method. In this paper,we employ the simulation technique to compare the performance of principal component estimator with some types of ordinary ridge regression estimators based on the value of the biasing constant (ridge parameter). The mean square error (MSE) is used as a criterion to assess the performance of such estimators.","PeriodicalId":13236,"journal":{"name":"Ibn Al-Haitham Journal For Pure And Applied Science","volume":"92 1 1","pages":"212-221"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Comparison Between Different Approaches to Overcome the Multicollinearity Problem in Linear Regression Models\",\"authors\":\"H. Gorgees, F. Mahdi\",\"doi\":\"10.30526/31.1.1841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the presence of multi-collinearity problem, the parameter estimation method based on the ordinary least squares procedure is unsatisfactory. In 1970, Hoerl and Kennard insert analternative method labeled as estimator of ridge regression. \\nIn such estimator, ridge parameter plays an important role in estimation. Various methods were proposed by many statisticians to select the biasing constant (ridge parameter). Another popular method that is used to deal with the multi-collinearity problem is the principal component method. In this paper,we employ the simulation technique to compare the performance of principal component estimator with some types of ordinary ridge regression estimators based on the value of the biasing constant (ridge parameter). The mean square error (MSE) is used as a criterion to assess the performance of such estimators.\",\"PeriodicalId\":13236,\"journal\":{\"name\":\"Ibn Al-Haitham Journal For Pure And Applied Science\",\"volume\":\"92 1 1\",\"pages\":\"212-221\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ibn Al-Haitham Journal For Pure And Applied Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30526/31.1.1841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn Al-Haitham Journal For Pure And Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/31.1.1841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在存在多重共线性问题时,基于普通最小二乘法的参数估计方法不能令人满意。1970年,Hoerl和Kennard引入了另一种方法,标记为岭回归的估计量。在这种估计中,脊参数在估计中起着重要的作用。许多统计学家提出了各种方法来选择偏置常数(脊参数)。另一种常用的处理多重共线性问题的方法是主成分法。在本文中,我们利用模拟技术比较了基于偏置常数(脊参数)值的主成分估计量与几种普通脊回归估计量的性能。均方误差(MSE)被用作评估这些估计器性能的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Comparison Between Different Approaches to Overcome the Multicollinearity Problem in Linear Regression Models
In the presence of multi-collinearity problem, the parameter estimation method based on the ordinary least squares procedure is unsatisfactory. In 1970, Hoerl and Kennard insert analternative method labeled as estimator of ridge regression. In such estimator, ridge parameter plays an important role in estimation. Various methods were proposed by many statisticians to select the biasing constant (ridge parameter). Another popular method that is used to deal with the multi-collinearity problem is the principal component method. In this paper,we employ the simulation technique to compare the performance of principal component estimator with some types of ordinary ridge regression estimators based on the value of the biasing constant (ridge parameter). The mean square error (MSE) is used as a criterion to assess the performance of such estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信