M. Cocco, S. Aretusini, C. Cornelio, S. Nielsen, E. Spagnuolo, E. Tinti, G. Di Toro
{"title":"地震中的断裂能和破裂功","authors":"M. Cocco, S. Aretusini, C. Cornelio, S. Nielsen, E. Spagnuolo, E. Tinti, G. Di Toro","doi":"10.1146/annurev-earth-071822-100304","DOIUrl":null,"url":null,"abstract":"Large seismogenic faults consist of approximately meter-thick fault cores surrounded by hundreds of meter-thick damage zones. Earthquakes are generated by rupture propagation and slip within fault cores and dissipate the stored elastic strain energy in fracture and frictional processes in the fault zone and in radiated seismic waves. Understanding this energy partitioning is fundamental in earthquake mechanics to explain fault dynamic weakening and causative rupture processes operating over different spatial and temporal scales. The energy dissipated in the earthquake rupture propagation along a fault is called fracture energy or breakdown work. Here we review fracture energy estimates from seismological, modeling, geological, and experimental studies and show that fracture energy scales with fault slip. We conclude that although material-dependent constant fracture energies are important at the microscale for fracturing grains of the fault zone, they are negligible with respect to the macroscale processes governing rupture propagation on natural faults. ▪ Earthquake ruptures propagate on geological faults and dissipate energy in fracture and frictional processes from micro- (less than a millimeter) to macroscale (centimeters to kilometers). ▪ The energy dissipated in earthquake rupture propagation is called fracture energy ( G) or breakdown work ( Wb) and scales with coseismic slip. ▪ For earthquake ruptures in natural faults, the estimates of G and Wb are consistent with a macroscale description of causative processes. ▪ The energy budget of an earthquake remains controversial, and contributions from different disciplines are required to unravel this issue. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"5 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fracture Energy and Breakdown Work During Earthquakes\",\"authors\":\"M. Cocco, S. Aretusini, C. Cornelio, S. Nielsen, E. Spagnuolo, E. Tinti, G. Di Toro\",\"doi\":\"10.1146/annurev-earth-071822-100304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large seismogenic faults consist of approximately meter-thick fault cores surrounded by hundreds of meter-thick damage zones. Earthquakes are generated by rupture propagation and slip within fault cores and dissipate the stored elastic strain energy in fracture and frictional processes in the fault zone and in radiated seismic waves. Understanding this energy partitioning is fundamental in earthquake mechanics to explain fault dynamic weakening and causative rupture processes operating over different spatial and temporal scales. The energy dissipated in the earthquake rupture propagation along a fault is called fracture energy or breakdown work. Here we review fracture energy estimates from seismological, modeling, geological, and experimental studies and show that fracture energy scales with fault slip. We conclude that although material-dependent constant fracture energies are important at the microscale for fracturing grains of the fault zone, they are negligible with respect to the macroscale processes governing rupture propagation on natural faults. ▪ Earthquake ruptures propagate on geological faults and dissipate energy in fracture and frictional processes from micro- (less than a millimeter) to macroscale (centimeters to kilometers). ▪ The energy dissipated in earthquake rupture propagation is called fracture energy ( G) or breakdown work ( Wb) and scales with coseismic slip. ▪ For earthquake ruptures in natural faults, the estimates of G and Wb are consistent with a macroscale description of causative processes. ▪ The energy budget of an earthquake remains controversial, and contributions from different disciplines are required to unravel this issue. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8034,\"journal\":{\"name\":\"Annual Review of Earth and Planetary Sciences\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Earth and Planetary Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-earth-071822-100304\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-071822-100304","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Fracture Energy and Breakdown Work During Earthquakes
Large seismogenic faults consist of approximately meter-thick fault cores surrounded by hundreds of meter-thick damage zones. Earthquakes are generated by rupture propagation and slip within fault cores and dissipate the stored elastic strain energy in fracture and frictional processes in the fault zone and in radiated seismic waves. Understanding this energy partitioning is fundamental in earthquake mechanics to explain fault dynamic weakening and causative rupture processes operating over different spatial and temporal scales. The energy dissipated in the earthquake rupture propagation along a fault is called fracture energy or breakdown work. Here we review fracture energy estimates from seismological, modeling, geological, and experimental studies and show that fracture energy scales with fault slip. We conclude that although material-dependent constant fracture energies are important at the microscale for fracturing grains of the fault zone, they are negligible with respect to the macroscale processes governing rupture propagation on natural faults. ▪ Earthquake ruptures propagate on geological faults and dissipate energy in fracture and frictional processes from micro- (less than a millimeter) to macroscale (centimeters to kilometers). ▪ The energy dissipated in earthquake rupture propagation is called fracture energy ( G) or breakdown work ( Wb) and scales with coseismic slip. ▪ For earthquake ruptures in natural faults, the estimates of G and Wb are consistent with a macroscale description of causative processes. ▪ The energy budget of an earthquake remains controversial, and contributions from different disciplines are required to unravel this issue. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.