{"title":"硅隧道场效应管在硅mosfet上温度稳定性的实验论证","authors":"S. Migita, K. Fukuda, Y. Morita, H. Ota","doi":"10.1109/SNW.2012.6243315","DOIUrl":null,"url":null,"abstract":"Temperature dependences of tunnel field-effect transistor (TFET) and MOSFET were experimentally compared on the same SOI wafer. Validity of the TFET result was corroborated by simulation. It is demonstrated that VTH shift and off-current increment of Si-TFET with temperature were smaller in comparison with Si-MOSFET. Temperature stability of TFET is promising for ultra-low power VLSI.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"3 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Experimental demonstration of temperature stability of Si-tunnel FET over Si-MOSFET\",\"authors\":\"S. Migita, K. Fukuda, Y. Morita, H. Ota\",\"doi\":\"10.1109/SNW.2012.6243315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temperature dependences of tunnel field-effect transistor (TFET) and MOSFET were experimentally compared on the same SOI wafer. Validity of the TFET result was corroborated by simulation. It is demonstrated that VTH shift and off-current increment of Si-TFET with temperature were smaller in comparison with Si-MOSFET. Temperature stability of TFET is promising for ultra-low power VLSI.\",\"PeriodicalId\":6402,\"journal\":{\"name\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"3 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNW.2012.6243315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental demonstration of temperature stability of Si-tunnel FET over Si-MOSFET
Temperature dependences of tunnel field-effect transistor (TFET) and MOSFET were experimentally compared on the same SOI wafer. Validity of the TFET result was corroborated by simulation. It is demonstrated that VTH shift and off-current increment of Si-TFET with temperature were smaller in comparison with Si-MOSFET. Temperature stability of TFET is promising for ultra-low power VLSI.