N. K. Mkhwanazi, C. D. de Koning, W. V. van Otterlo, M. Ariatti, Moganavelli Singh
{"title":"聚乙二醇化增强肝癌细胞靶向脂质体介导的体外基因传递通过asialalglyprotein受体","authors":"N. K. Mkhwanazi, C. D. de Koning, W. V. van Otterlo, M. Ariatti, Moganavelli Singh","doi":"10.1515/znc-2016-0172","DOIUrl":null,"url":null,"abstract":"Abstract Hepatocellular carcinoma is a burgeoning health issue in sub-Saharan Africa and East Asia where it is most prevalent. The search for gene medicine treatment modalities for this condition represents a novel departure from current treatment options and is gaining momentum. Here we report on nonPEGylated and on sterically stabilized PEGylated cationic liposomes decorated with D-galacto moieties linked to 24.1 Å spacers for asialoglycoprotein receptor (ASGP-R)-targeted vehiculation of pCMV-luc plasmid DNA. Cargo DNA is fully liposome associated at N/P ratio=3:1 and is partially protected from the effects of serum nucleases. Moreover, at this ratio, lipoplex dimensions (89–97 nm) are compatible with the requirements for extravasation in vivo. Ethidium displacement assays show that the reporter DNA is in a less condensed state when bound to PEGylated liposomes than with nonPEGylated liposomes. PEGylated lipoplexes were well tolerated by both HEK293 (ASGP-R-negative) and HepG2 (ASGP-R-positive) cell lines and delivered DNA to the human hepatoma cell line HepG2 by ASGP-R mediation at levels three-fold greater than nonPEGylated lipoplexes. PEGylated ASGP-R-targeted liposomes reported in this study possess the required characteristics for hepatotropic gene delivery and may be considered for further application in vivo.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":"80 1","pages":"293 - 301"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"PEGylation potentiates hepatoma cell targeted liposome-mediated in vitro gene delivery via the asialoglycoprotein receptor\",\"authors\":\"N. K. Mkhwanazi, C. D. de Koning, W. V. van Otterlo, M. Ariatti, Moganavelli Singh\",\"doi\":\"10.1515/znc-2016-0172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hepatocellular carcinoma is a burgeoning health issue in sub-Saharan Africa and East Asia where it is most prevalent. The search for gene medicine treatment modalities for this condition represents a novel departure from current treatment options and is gaining momentum. Here we report on nonPEGylated and on sterically stabilized PEGylated cationic liposomes decorated with D-galacto moieties linked to 24.1 Å spacers for asialoglycoprotein receptor (ASGP-R)-targeted vehiculation of pCMV-luc plasmid DNA. Cargo DNA is fully liposome associated at N/P ratio=3:1 and is partially protected from the effects of serum nucleases. Moreover, at this ratio, lipoplex dimensions (89–97 nm) are compatible with the requirements for extravasation in vivo. Ethidium displacement assays show that the reporter DNA is in a less condensed state when bound to PEGylated liposomes than with nonPEGylated liposomes. PEGylated lipoplexes were well tolerated by both HEK293 (ASGP-R-negative) and HepG2 (ASGP-R-positive) cell lines and delivered DNA to the human hepatoma cell line HepG2 by ASGP-R mediation at levels three-fold greater than nonPEGylated lipoplexes. PEGylated ASGP-R-targeted liposomes reported in this study possess the required characteristics for hepatotropic gene delivery and may be considered for further application in vivo.\",\"PeriodicalId\":23894,\"journal\":{\"name\":\"Zeitschrift für Naturforschung C\",\"volume\":\"80 1\",\"pages\":\"293 - 301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/znc-2016-0172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znc-2016-0172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PEGylation potentiates hepatoma cell targeted liposome-mediated in vitro gene delivery via the asialoglycoprotein receptor
Abstract Hepatocellular carcinoma is a burgeoning health issue in sub-Saharan Africa and East Asia where it is most prevalent. The search for gene medicine treatment modalities for this condition represents a novel departure from current treatment options and is gaining momentum. Here we report on nonPEGylated and on sterically stabilized PEGylated cationic liposomes decorated with D-galacto moieties linked to 24.1 Å spacers for asialoglycoprotein receptor (ASGP-R)-targeted vehiculation of pCMV-luc plasmid DNA. Cargo DNA is fully liposome associated at N/P ratio=3:1 and is partially protected from the effects of serum nucleases. Moreover, at this ratio, lipoplex dimensions (89–97 nm) are compatible with the requirements for extravasation in vivo. Ethidium displacement assays show that the reporter DNA is in a less condensed state when bound to PEGylated liposomes than with nonPEGylated liposomes. PEGylated lipoplexes were well tolerated by both HEK293 (ASGP-R-negative) and HepG2 (ASGP-R-positive) cell lines and delivered DNA to the human hepatoma cell line HepG2 by ASGP-R mediation at levels three-fold greater than nonPEGylated lipoplexes. PEGylated ASGP-R-targeted liposomes reported in this study possess the required characteristics for hepatotropic gene delivery and may be considered for further application in vivo.