slmbsvm:基于结构损失最小化的支持向量机方法

Liang Zhang, Shui Yu, Yunming Ye, Fanyuan Ma
{"title":"slmbsvm:基于结构损失最小化的支持向量机方法","authors":"Liang Zhang, Shui Yu, Yunming Ye, Fanyuan Ma","doi":"10.1109/ICMLC.2002.1167448","DOIUrl":null,"url":null,"abstract":"Existing approaches,for constructing SVMs are based on minimization of structural risk where the generalization error loss is treated equivalently for each training pattern. Considering that error loss of one pattern is generally different to the other's in real binary classification problems, we propose a reformulation of the minimization problem such that generalization error rate for-each training pattern are treated respectively to minimize total generalization loss, which we call the structural-loss-minimization-based support vector machines (SLMBSVM). We. show experimentally that SLMBSVMs is potential.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"31 1","pages":"1455-1459 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SLMBSVMs: a structural-loss-minimization-based support vector machines approach\",\"authors\":\"Liang Zhang, Shui Yu, Yunming Ye, Fanyuan Ma\",\"doi\":\"10.1109/ICMLC.2002.1167448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing approaches,for constructing SVMs are based on minimization of structural risk where the generalization error loss is treated equivalently for each training pattern. Considering that error loss of one pattern is generally different to the other's in real binary classification problems, we propose a reformulation of the minimization problem such that generalization error rate for-each training pattern are treated respectively to minimize total generalization loss, which we call the structural-loss-minimization-based support vector machines (SLMBSVM). We. show experimentally that SLMBSVMs is potential.\",\"PeriodicalId\":90702,\"journal\":{\"name\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"volume\":\"31 1\",\"pages\":\"1455-1459 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2002.1167448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1167448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现有的构建支持向量机的方法是基于最小化结构风险,其中对每个训练模式的泛化误差损失进行等效处理。考虑到在实际的二值分类问题中,一种模式的误差损失与另一种模式的误差损失通常是不同的,我们提出了一种最小化问题的重新表述,即分别处理每种训练模式的泛化错误率以最小化总泛化损失,我们称之为基于结构损失最小化的支持向量机(SLMBSVM)。我们。实验证明了slmbsvm是有潜力的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SLMBSVMs: a structural-loss-minimization-based support vector machines approach
Existing approaches,for constructing SVMs are based on minimization of structural risk where the generalization error loss is treated equivalently for each training pattern. Considering that error loss of one pattern is generally different to the other's in real binary classification problems, we propose a reformulation of the minimization problem such that generalization error rate for-each training pattern are treated respectively to minimize total generalization loss, which we call the structural-loss-minimization-based support vector machines (SLMBSVM). We. show experimentally that SLMBSVMs is potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信