{"title":"利用脑电图数据检测眼球运动","authors":"Aishwaroopa Narayanan","doi":"10.47611/jsrhs.v12i2.4231","DOIUrl":null,"url":null,"abstract":"In this paper, we show that it is possible to use EEG data to detect eye movement using machine learning. By recognizing eye movement through EEG results, our goal is to help individuals with disabilities better control object movement and perform daily activities independently. This is especially important as many disabled individuals rely on assistance from others for their daily needs, which can be burdensome for the person providing help. To achieve these objectives, we trained different machine learning models using a data set of eye-state classification from Kaggle. We analyzed the results to assess the accuracy of a KNN (K Nearest Neighbors) model. With the model achieved an accuracy of 95.23% in detecting eye movement in patients. These findings suggest that the model could be effectively utilized in the future, with further research to assist individuals with disabilities. Overall, our research suggests that it is possible to recognize eye movement through EEG results reliably. Further research in this area could lead to the development of more effective and personalized interventions for individuals with poor hand-eye coordination.","PeriodicalId":46753,"journal":{"name":"Journal of Student Affairs Research and Practice","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using EEG Data to Detect Eye Movement\",\"authors\":\"Aishwaroopa Narayanan\",\"doi\":\"10.47611/jsrhs.v12i2.4231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show that it is possible to use EEG data to detect eye movement using machine learning. By recognizing eye movement through EEG results, our goal is to help individuals with disabilities better control object movement and perform daily activities independently. This is especially important as many disabled individuals rely on assistance from others for their daily needs, which can be burdensome for the person providing help. To achieve these objectives, we trained different machine learning models using a data set of eye-state classification from Kaggle. We analyzed the results to assess the accuracy of a KNN (K Nearest Neighbors) model. With the model achieved an accuracy of 95.23% in detecting eye movement in patients. These findings suggest that the model could be effectively utilized in the future, with further research to assist individuals with disabilities. Overall, our research suggests that it is possible to recognize eye movement through EEG results reliably. Further research in this area could lead to the development of more effective and personalized interventions for individuals with poor hand-eye coordination.\",\"PeriodicalId\":46753,\"journal\":{\"name\":\"Journal of Student Affairs Research and Practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Student Affairs Research and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47611/jsrhs.v12i2.4231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Student Affairs Research and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47611/jsrhs.v12i2.4231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
In this paper, we show that it is possible to use EEG data to detect eye movement using machine learning. By recognizing eye movement through EEG results, our goal is to help individuals with disabilities better control object movement and perform daily activities independently. This is especially important as many disabled individuals rely on assistance from others for their daily needs, which can be burdensome for the person providing help. To achieve these objectives, we trained different machine learning models using a data set of eye-state classification from Kaggle. We analyzed the results to assess the accuracy of a KNN (K Nearest Neighbors) model. With the model achieved an accuracy of 95.23% in detecting eye movement in patients. These findings suggest that the model could be effectively utilized in the future, with further research to assist individuals with disabilities. Overall, our research suggests that it is possible to recognize eye movement through EEG results reliably. Further research in this area could lead to the development of more effective and personalized interventions for individuals with poor hand-eye coordination.
期刊介绍:
The vision of the Journal of Student Affairs Research and Practice (JSARP) is to publish the most rigorous, relevant, and well-respected research and practice making a difference in student affairs practice. JSARP especially encourages manuscripts that are unconventional in nature and that engage in methodological and epistemological extensions that transcend the boundaries of traditional research inquiries.