I. Majumdar, B. Ümsür, B. Chacko, D. Greiner, M. Lux‐Steiner, R. Schlatmann, I. Lauermann
{"title":"同步加速器研究Na和K金属含Cu(In,Ga)Se2吸收剂的表面修饰","authors":"I. Majumdar, B. Ümsür, B. Chacko, D. Greiner, M. Lux‐Steiner, R. Schlatmann, I. Lauermann","doi":"10.1002/PSSC.201700167","DOIUrl":null,"url":null,"abstract":"Na and K metals have been evaporated on a Cu(In,Ga)Se2 (CIGSe) thin film solar cell absorber at 400 °C in order to investigate the effect of alkali metal incorporation on the very near-surface (up to 5 nm) region of the CIGSe absorber using soft X-ray spectroscopy techniques, focusing on the main compositional and electronic modifications of the absorber surface. Quantitative X-ray photoelectron spectroscopy (XPS) showed Cu deficiency and Se enrichment on the CIGSe surface after alkali treatment which may play a role in assisting Na diffusion away from the surface, leaving behind a significantly higher K content than Na along the entire range of the CIGSe surface region probed, although nominally equal amounts of Na and K metal have been evaporated onto the CIGSe surface. A [K]/([K]+[Cu]) concentration ratio of 0.99 ± 0.01 at an information depth of ≈1.7 nm from the surface may indicate the formation of a wide band gap compound like KInSe2 (Eg ∼ 2.67 eV) on the CIGSe surface as a result of alkali metal deposition. Ultra-violet photoemission spectroscopy (UPS) and near edge X-ray absorption fine structure spectroscopy (NEXAFS) measurements further confirm a 1.09 eV surface band gap increase along with a type-inversion at the surface of the alkali metal-incorporated CIGSe as compared to the untreated CIGSe with a surface band gap of 1.3 ± 0.2 eV. These changes in the surface composition and electronic structure of the modified CIGSe surface as a result of the alkaline treatment could be attributed to the increase in alkali-treated CIGSe-based thin film solar cell efficiencies seen in recent years.","PeriodicalId":20065,"journal":{"name":"Physica Status Solidi (c)","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Surface Modifications of Na and K Metal Incorporated Cu(In,Ga)Se2 Absorbers Investigated by Synchrotron‐Based Spectroscopies\",\"authors\":\"I. Majumdar, B. Ümsür, B. Chacko, D. Greiner, M. Lux‐Steiner, R. Schlatmann, I. Lauermann\",\"doi\":\"10.1002/PSSC.201700167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Na and K metals have been evaporated on a Cu(In,Ga)Se2 (CIGSe) thin film solar cell absorber at 400 °C in order to investigate the effect of alkali metal incorporation on the very near-surface (up to 5 nm) region of the CIGSe absorber using soft X-ray spectroscopy techniques, focusing on the main compositional and electronic modifications of the absorber surface. Quantitative X-ray photoelectron spectroscopy (XPS) showed Cu deficiency and Se enrichment on the CIGSe surface after alkali treatment which may play a role in assisting Na diffusion away from the surface, leaving behind a significantly higher K content than Na along the entire range of the CIGSe surface region probed, although nominally equal amounts of Na and K metal have been evaporated onto the CIGSe surface. A [K]/([K]+[Cu]) concentration ratio of 0.99 ± 0.01 at an information depth of ≈1.7 nm from the surface may indicate the formation of a wide band gap compound like KInSe2 (Eg ∼ 2.67 eV) on the CIGSe surface as a result of alkali metal deposition. Ultra-violet photoemission spectroscopy (UPS) and near edge X-ray absorption fine structure spectroscopy (NEXAFS) measurements further confirm a 1.09 eV surface band gap increase along with a type-inversion at the surface of the alkali metal-incorporated CIGSe as compared to the untreated CIGSe with a surface band gap of 1.3 ± 0.2 eV. These changes in the surface composition and electronic structure of the modified CIGSe surface as a result of the alkaline treatment could be attributed to the increase in alkali-treated CIGSe-based thin film solar cell efficiencies seen in recent years.\",\"PeriodicalId\":20065,\"journal\":{\"name\":\"Physica Status Solidi (c)\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi (c)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/PSSC.201700167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi (c)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/PSSC.201700167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface Modifications of Na and K Metal Incorporated Cu(In,Ga)Se2 Absorbers Investigated by Synchrotron‐Based Spectroscopies
Na and K metals have been evaporated on a Cu(In,Ga)Se2 (CIGSe) thin film solar cell absorber at 400 °C in order to investigate the effect of alkali metal incorporation on the very near-surface (up to 5 nm) region of the CIGSe absorber using soft X-ray spectroscopy techniques, focusing on the main compositional and electronic modifications of the absorber surface. Quantitative X-ray photoelectron spectroscopy (XPS) showed Cu deficiency and Se enrichment on the CIGSe surface after alkali treatment which may play a role in assisting Na diffusion away from the surface, leaving behind a significantly higher K content than Na along the entire range of the CIGSe surface region probed, although nominally equal amounts of Na and K metal have been evaporated onto the CIGSe surface. A [K]/([K]+[Cu]) concentration ratio of 0.99 ± 0.01 at an information depth of ≈1.7 nm from the surface may indicate the formation of a wide band gap compound like KInSe2 (Eg ∼ 2.67 eV) on the CIGSe surface as a result of alkali metal deposition. Ultra-violet photoemission spectroscopy (UPS) and near edge X-ray absorption fine structure spectroscopy (NEXAFS) measurements further confirm a 1.09 eV surface band gap increase along with a type-inversion at the surface of the alkali metal-incorporated CIGSe as compared to the untreated CIGSe with a surface band gap of 1.3 ± 0.2 eV. These changes in the surface composition and electronic structure of the modified CIGSe surface as a result of the alkaline treatment could be attributed to the increase in alkali-treated CIGSe-based thin film solar cell efficiencies seen in recent years.