{"title":"图论表示的工程系统和他们的嵌入式知识","authors":"O. Shai , K. Preiss","doi":"10.1016/S0954-1810(99)00002-3","DOIUrl":null,"url":null,"abstract":"<div><p>The discrete mathematical representations of graph theory, augmented by theorems of matroid theory, were found to have elements and structures isomorphic with those of many different engineering systems. The properties of the mathematical elements of those graphs and the relations between them are then equivalent to knowledge about the engineering system, and are hence termed “embedded knowledge”. The use of this embedded knowledge is illustrated by several examples: a structural truss, a gear wheel system, a mass-spring-dashpot system and a mechanism. Using various graph representations and the theorems and algorithms embedded within them, provides a fruitful source of representations which can form a basis upon which to extend formal theories of reformulation.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":"13 3","pages":"Pages 273-285"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(99)00002-3","citationCount":"44","resultStr":"{\"title\":\"Graph theory representations of engineering systems and their embedded knowledge\",\"authors\":\"O. Shai , K. Preiss\",\"doi\":\"10.1016/S0954-1810(99)00002-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The discrete mathematical representations of graph theory, augmented by theorems of matroid theory, were found to have elements and structures isomorphic with those of many different engineering systems. The properties of the mathematical elements of those graphs and the relations between them are then equivalent to knowledge about the engineering system, and are hence termed “embedded knowledge”. The use of this embedded knowledge is illustrated by several examples: a structural truss, a gear wheel system, a mass-spring-dashpot system and a mechanism. Using various graph representations and the theorems and algorithms embedded within them, provides a fruitful source of representations which can form a basis upon which to extend formal theories of reformulation.</p></div>\",\"PeriodicalId\":100123,\"journal\":{\"name\":\"Artificial Intelligence in Engineering\",\"volume\":\"13 3\",\"pages\":\"Pages 273-285\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0954-1810(99)00002-3\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0954181099000023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181099000023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph theory representations of engineering systems and their embedded knowledge
The discrete mathematical representations of graph theory, augmented by theorems of matroid theory, were found to have elements and structures isomorphic with those of many different engineering systems. The properties of the mathematical elements of those graphs and the relations between them are then equivalent to knowledge about the engineering system, and are hence termed “embedded knowledge”. The use of this embedded knowledge is illustrated by several examples: a structural truss, a gear wheel system, a mass-spring-dashpot system and a mechanism. Using various graph representations and the theorems and algorithms embedded within them, provides a fruitful source of representations which can form a basis upon which to extend formal theories of reformulation.