F. Torricelli, E. Macchia, P. Romele, K. Manoli, C. Franco, Z. Kovács-Vajna, G. Palazzo, G. Scamarcio, L. Torsi
{"title":"单分子有机晶体管的研究与建模","authors":"F. Torricelli, E. Macchia, P. Romele, K. Manoli, C. Franco, Z. Kovács-Vajna, G. Palazzo, G. Scamarcio, L. Torsi","doi":"10.1109/SISPAD.2019.8870484","DOIUrl":null,"url":null,"abstract":"Biofunctionalized organic transistors have been recently proposed as a simple wide-field single molecule technology. The further development and engineering of this disruptive technology urgently requires the understanding and modelling of the device operation. Here we show a physical-based numerical model of single molecule organic transistors. The model accurately reproduces the measurements in the whole range of protein concentrations with a unique set of parameters. The model provides quantitative information on the bioelectronic device operation. It is an important tool for further development of transistor-based single molecule.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"14 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation and Modelling of Single-Molecule Organic Transistors\",\"authors\":\"F. Torricelli, E. Macchia, P. Romele, K. Manoli, C. Franco, Z. Kovács-Vajna, G. Palazzo, G. Scamarcio, L. Torsi\",\"doi\":\"10.1109/SISPAD.2019.8870484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biofunctionalized organic transistors have been recently proposed as a simple wide-field single molecule technology. The further development and engineering of this disruptive technology urgently requires the understanding and modelling of the device operation. Here we show a physical-based numerical model of single molecule organic transistors. The model accurately reproduces the measurements in the whole range of protein concentrations with a unique set of parameters. The model provides quantitative information on the bioelectronic device operation. It is an important tool for further development of transistor-based single molecule.\",\"PeriodicalId\":6755,\"journal\":{\"name\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"14 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2019.8870484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation and Modelling of Single-Molecule Organic Transistors
Biofunctionalized organic transistors have been recently proposed as a simple wide-field single molecule technology. The further development and engineering of this disruptive technology urgently requires the understanding and modelling of the device operation. Here we show a physical-based numerical model of single molecule organic transistors. The model accurately reproduces the measurements in the whole range of protein concentrations with a unique set of parameters. The model provides quantitative information on the bioelectronic device operation. It is an important tool for further development of transistor-based single molecule.