用卷积神经网络诊断电力变压器局部放电

S. Sowndarya, S. Balaraman
{"title":"用卷积神经网络诊断电力变压器局部放电","authors":"S. Sowndarya, S. Balaraman","doi":"10.36548/jscp.2022.1.004","DOIUrl":null,"url":null,"abstract":"In an electric power system, power transformers are essential. Transformer failures can degrade the quality of the power and create power outages. Partial Discharges (PD) are a condition that, if not adequately monitored, can cause power transformer failures. This project addresses the diagnosis of PD in power transformer using the Phase Amplitude (PA) response of PRPD (Phase-Resolved Partial Discharge) patterns recorded using PD Detectors. It is a widely used pattern for analysing Partial Discharge. A Convolutional Neural Network (CNN) is used to classify the type of PD defects. The PRPD patterns of 240 PA sample images have been taken from power transformer of rating 132/11 KV and 132/25 KV for training and testing the network. The feature extraction has also been done using CNN. In this work, the classification of PD faults is done using a supervised machine learning technique. The three different classes of PD faults such as Floating PD, Surface PD and Void PD are considered and predicted using Support Vector Machine (SVM) classifier. Simulation study is carried out using MATLAB. Based on the results obtained, it is found that CNN model has achieved a greater classification accuracy and thereby the life span of power transformer is enhanced.","PeriodicalId":10940,"journal":{"name":"Day 2 Tue, March 22, 2022","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosis of Partial Discharge in Power Transformer using Convolutional Neural Network\",\"authors\":\"S. Sowndarya, S. Balaraman\",\"doi\":\"10.36548/jscp.2022.1.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an electric power system, power transformers are essential. Transformer failures can degrade the quality of the power and create power outages. Partial Discharges (PD) are a condition that, if not adequately monitored, can cause power transformer failures. This project addresses the diagnosis of PD in power transformer using the Phase Amplitude (PA) response of PRPD (Phase-Resolved Partial Discharge) patterns recorded using PD Detectors. It is a widely used pattern for analysing Partial Discharge. A Convolutional Neural Network (CNN) is used to classify the type of PD defects. The PRPD patterns of 240 PA sample images have been taken from power transformer of rating 132/11 KV and 132/25 KV for training and testing the network. The feature extraction has also been done using CNN. In this work, the classification of PD faults is done using a supervised machine learning technique. The three different classes of PD faults such as Floating PD, Surface PD and Void PD are considered and predicted using Support Vector Machine (SVM) classifier. Simulation study is carried out using MATLAB. Based on the results obtained, it is found that CNN model has achieved a greater classification accuracy and thereby the life span of power transformer is enhanced.\",\"PeriodicalId\":10940,\"journal\":{\"name\":\"Day 2 Tue, March 22, 2022\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, March 22, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/jscp.2022.1.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, March 22, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jscp.2022.1.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在电力系统中,电力变压器是必不可少的。变压器故障会降低电力质量并造成停电。局部放电(PD)是一种情况,如果没有充分监测,可能导致电力变压器故障。本项目利用PD检测器记录的PRPD(相位分解局部放电)模式的相位振幅(PA)响应,解决了电力变压器PD的诊断问题。这是一种广泛应用于局部放电分析的模式。利用卷积神经网络(CNN)对PD缺陷进行分类。从额定电压为132/11 KV和132/25 KV的电力变压器中提取240个PA样本图像的PRPD模式,用于网络的训练和测试。特征提取也使用了CNN。在这项工作中,使用监督机器学习技术对PD故障进行分类。采用支持向量机(SVM)分类器对浮动局部放电、表面局部放电和空局部放电三种不同类型的局部放电故障进行了预测。利用MATLAB进行仿真研究。根据所得结果,发现CNN模型达到了更高的分类精度,从而提高了电力变压器的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnosis of Partial Discharge in Power Transformer using Convolutional Neural Network
In an electric power system, power transformers are essential. Transformer failures can degrade the quality of the power and create power outages. Partial Discharges (PD) are a condition that, if not adequately monitored, can cause power transformer failures. This project addresses the diagnosis of PD in power transformer using the Phase Amplitude (PA) response of PRPD (Phase-Resolved Partial Discharge) patterns recorded using PD Detectors. It is a widely used pattern for analysing Partial Discharge. A Convolutional Neural Network (CNN) is used to classify the type of PD defects. The PRPD patterns of 240 PA sample images have been taken from power transformer of rating 132/11 KV and 132/25 KV for training and testing the network. The feature extraction has also been done using CNN. In this work, the classification of PD faults is done using a supervised machine learning technique. The three different classes of PD faults such as Floating PD, Surface PD and Void PD are considered and predicted using Support Vector Machine (SVM) classifier. Simulation study is carried out using MATLAB. Based on the results obtained, it is found that CNN model has achieved a greater classification accuracy and thereby the life span of power transformer is enhanced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信