基于拉格朗日乘法器的非拟合有限元接触问题的多重网格技术。

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS
Kothari Rolf, Krause Hardik
{"title":"基于拉格朗日乘法器的非拟合有限元接触问题的多重网格技术。","authors":"Kothari Rolf, Krause Hardik","doi":"10.47679/ijasca.v2i2.22","DOIUrl":null,"url":null,"abstract":"Internal  interfaces  in a  domain  could exist as a  material defect or they can appear  due to propagations  of  cracks. Discretization  of such geometries  and solution  of the contact problem  on the internal  interfaces  can be computationally challenging. We employ an unfitted Finite Element (FE) framework for the discretization of the domains and develop a tailored, globally  convergent, and efficient  multigrid method for solving contact problems on the internal interfaces.  In the unfitted FE methods, structured background meshes are used and only the underlying finite element spaces are modified to incorporate the discontinuities. The non-penetration conditions  on the embedded interfaces  of the domains are discretized  using the method of Lagrange multipliers. We reformulate the arising variational inequality problem as a quadratic minimization  problem with linear inequality constraints.  Our multigrid method can solve such problems by employing  a tailored multilevel  hierarchy  of the FE spaces and a novel approach for tackling the discretized non-penetration conditions. We employ pseudo-L2  projection- based transfer operators to construct a hierarchy of nested FE spaces from the hierarchy of non-nested meshes. The essential component of our multigrid method is a technique that decouples the linear  constraints  using an orthogonal transformation. The decoupled constraints  are handled by a modified variant of the projected  Gauss–Seidel  method, which we employ  as a smoother in the multigrid method.  These components of the multigrid method allow us to enforce  linear constraints locally and ensure the global convergence.  We will demonstrate the robustness, efficiency,  and level independent convergence property of the proposed method for Signorini’s  problem and two-body contact problems","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multigrid technique for Lagrange multiplier-based unfitted Finite Element contact issues.\",\"authors\":\"Kothari Rolf, Krause Hardik\",\"doi\":\"10.47679/ijasca.v2i2.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internal  interfaces  in a  domain  could exist as a  material defect or they can appear  due to propagations  of  cracks. Discretization  of such geometries  and solution  of the contact problem  on the internal  interfaces  can be computationally challenging. We employ an unfitted Finite Element (FE) framework for the discretization of the domains and develop a tailored, globally  convergent, and efficient  multigrid method for solving contact problems on the internal interfaces.  In the unfitted FE methods, structured background meshes are used and only the underlying finite element spaces are modified to incorporate the discontinuities. The non-penetration conditions  on the embedded interfaces  of the domains are discretized  using the method of Lagrange multipliers. We reformulate the arising variational inequality problem as a quadratic minimization  problem with linear inequality constraints.  Our multigrid method can solve such problems by employing  a tailored multilevel  hierarchy  of the FE spaces and a novel approach for tackling the discretized non-penetration conditions. We employ pseudo-L2  projection- based transfer operators to construct a hierarchy of nested FE spaces from the hierarchy of non-nested meshes. The essential component of our multigrid method is a technique that decouples the linear  constraints  using an orthogonal transformation. The decoupled constraints  are handled by a modified variant of the projected  Gauss–Seidel  method, which we employ  as a smoother in the multigrid method.  These components of the multigrid method allow us to enforce  linear constraints locally and ensure the global convergence.  We will demonstrate the robustness, efficiency,  and level independent convergence property of the proposed method for Signorini’s  problem and two-body contact problems\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47679/ijasca.v2i2.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47679/ijasca.v2i2.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

区域内部界面可以作为材料缺陷存在,也可以由于裂纹的扩展而出现。这种几何图形的离散化和内部界面接触问题的求解在计算上具有挑战性。我们采用非拟合有限元(FE)框架对域进行离散化,并开发了一种定制的、全局收敛的、高效的多网格方法来解决内部界面上的接触问题。在非拟合有限元方法中,使用结构化背景网格,仅修改底层有限元空间以包含不连续。采用拉格朗日乘子法对域内嵌界面的非侵彻条件进行离散化。我们将引起变分不等式的问题重新表述为具有线性不等式约束的二次最小化问题。我们的多重网格方法可以通过采用定制的有限元空间多层次结构和处理离散非穿透条件的新方法来解决这些问题。我们采用基于伪l2投影的转移算子,从非嵌套网格的层次结构构造了嵌套有限元空间的层次结构。我们的多重网格方法的基本组成部分是一种利用正交变换解耦线性约束的技术。解耦约束由一种改进的投影高斯-塞德尔方法处理,我们将其作为多网格方法中的平滑器。多重网格方法的这些组成部分允许我们在局部执行线性约束并确保全局收敛。对于Signorini问题和两体接触问题,我们将证明该方法的鲁棒性、效率和水平无关的收敛性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multigrid technique for Lagrange multiplier-based unfitted Finite Element contact issues.
Internal  interfaces  in a  domain  could exist as a  material defect or they can appear  due to propagations  of  cracks. Discretization  of such geometries  and solution  of the contact problem  on the internal  interfaces  can be computationally challenging. We employ an unfitted Finite Element (FE) framework for the discretization of the domains and develop a tailored, globally  convergent, and efficient  multigrid method for solving contact problems on the internal interfaces.  In the unfitted FE methods, structured background meshes are used and only the underlying finite element spaces are modified to incorporate the discontinuities. The non-penetration conditions  on the embedded interfaces  of the domains are discretized  using the method of Lagrange multipliers. We reformulate the arising variational inequality problem as a quadratic minimization  problem with linear inequality constraints.  Our multigrid method can solve such problems by employing  a tailored multilevel  hierarchy  of the FE spaces and a novel approach for tackling the discretized non-penetration conditions. We employ pseudo-L2  projection- based transfer operators to construct a hierarchy of nested FE spaces from the hierarchy of non-nested meshes. The essential component of our multigrid method is a technique that decouples the linear  constraints  using an orthogonal transformation. The decoupled constraints  are handled by a modified variant of the projected  Gauss–Seidel  method, which we employ  as a smoother in the multigrid method.  These components of the multigrid method allow us to enforce  linear constraints locally and ensure the global convergence.  We will demonstrate the robustness, efficiency,  and level independent convergence property of the proposed method for Signorini’s  problem and two-body contact problems
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信