太阳能板介孔催化剂去除挥发性有机化合物的研究

C. Chang, Ri-Tian Ruan
{"title":"太阳能板介孔催化剂去除挥发性有机化合物的研究","authors":"C. Chang, Ri-Tian Ruan","doi":"10.1109/ICMREE.2013.6893735","DOIUrl":null,"url":null,"abstract":"In this research, the adsorption of toluene was tested with MCM-41 and mesoporous silica materials synthesized from spent solar panel and glass. The synthesized solution was mixed with cationic cetyltrimethyl ammonium bromide (CTAB) surfactants. The prepared adsorbents were characterized by nitrogen adsorption-desorption analysis, transmission electron microscope, scanning electron microscope - energy dispersive spectroscopy, X-ray powder diffractometer and Fourier transform infrared spectroscopy. The results showed that the surface area, large pore volume and pore diameter could be up to 1280m2 g-1, 0.82cm3 g-1 and 2.62 nm, respectively. The crystal patterns of mesoporous silica materials were similar of MCM-41 from TEM image. In this study, the effects of operation parameters, such as contact time and mixture concentration, on adsorption performance were also assessed.","PeriodicalId":6427,"journal":{"name":"2013 International Conference on Materials for Renewable Energy and Environment","volume":"1 1","pages":"562-564"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the volatile organic compounds removal with mesoporous catalysts made from solar panel\",\"authors\":\"C. Chang, Ri-Tian Ruan\",\"doi\":\"10.1109/ICMREE.2013.6893735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the adsorption of toluene was tested with MCM-41 and mesoporous silica materials synthesized from spent solar panel and glass. The synthesized solution was mixed with cationic cetyltrimethyl ammonium bromide (CTAB) surfactants. The prepared adsorbents were characterized by nitrogen adsorption-desorption analysis, transmission electron microscope, scanning electron microscope - energy dispersive spectroscopy, X-ray powder diffractometer and Fourier transform infrared spectroscopy. The results showed that the surface area, large pore volume and pore diameter could be up to 1280m2 g-1, 0.82cm3 g-1 and 2.62 nm, respectively. The crystal patterns of mesoporous silica materials were similar of MCM-41 from TEM image. In this study, the effects of operation parameters, such as contact time and mixture concentration, on adsorption performance were also assessed.\",\"PeriodicalId\":6427,\"journal\":{\"name\":\"2013 International Conference on Materials for Renewable Energy and Environment\",\"volume\":\"1 1\",\"pages\":\"562-564\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Materials for Renewable Energy and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMREE.2013.6893735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Materials for Renewable Energy and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMREE.2013.6893735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究用MCM-41和由废太阳能电池板和玻璃合成的介孔二氧化硅材料对甲苯的吸附进行了测试。合成的溶液与阳离子十六烷基三甲基溴化铵(CTAB)表面活性剂混合。采用氮吸附-解吸分析、透射电镜、扫描电镜-能谱、x射线粉末衍射仪和傅里叶变换红外光谱对制备的吸附剂进行了表征。结果表明,该材料的比表面积可达1280m2 g-1,大孔体积可达0.82cm m3 g-1,孔径可达2.62 nm。TEM图像显示,介孔二氧化硅材料的晶型与MCM-41相似。在本研究中,还评估了操作参数(如接触时间和混合物浓度)对吸附性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the volatile organic compounds removal with mesoporous catalysts made from solar panel
In this research, the adsorption of toluene was tested with MCM-41 and mesoporous silica materials synthesized from spent solar panel and glass. The synthesized solution was mixed with cationic cetyltrimethyl ammonium bromide (CTAB) surfactants. The prepared adsorbents were characterized by nitrogen adsorption-desorption analysis, transmission electron microscope, scanning electron microscope - energy dispersive spectroscopy, X-ray powder diffractometer and Fourier transform infrared spectroscopy. The results showed that the surface area, large pore volume and pore diameter could be up to 1280m2 g-1, 0.82cm3 g-1 and 2.62 nm, respectively. The crystal patterns of mesoporous silica materials were similar of MCM-41 from TEM image. In this study, the effects of operation parameters, such as contact time and mixture concentration, on adsorption performance were also assessed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信