采用模糊逻辑提取可穿戴式心率监测系统

Tomoya Tanaka, T. Fujita, K. Sonoda, M. Nii, K. Kanda, K. Maenaka, A. C. Kit, S. Okochi, K. Higuchi
{"title":"采用模糊逻辑提取可穿戴式心率监测系统","authors":"Tomoya Tanaka, T. Fujita, K. Sonoda, M. Nii, K. Kanda, K. Maenaka, A. C. Kit, S. Okochi, K. Higuchi","doi":"10.1080/1931308X.2013.847621","DOIUrl":null,"url":null,"abstract":"Continuous human monitoring is substantially useful to realize a high QoL (quality of life) society. In the previous work, we fabricated a prototype system for monitoring an electrocardiograph (ECG), heart rate (HR), 3 axes human body acceleration, temperature for human body and human circumstances, simultaneously. These data are transmitted to the host PC and used for analyzing the human activities and conditions such as a heart rate variability (HRV). The HRV that calculated from HR is valuable for recognizing a mental or physical stress of human subjects. In this study, we demonstrate a fuzzy logic HR extraction algorithm on the prototype system to realize an autonomous HRV monitoring system. On-board fuzzy algorithm will reduce the communication traffic and improve an accuracy of the HR extraction. From the implementation result, the error ratio of the HR extraction is improved from 0.9 % to 0.4 %.","PeriodicalId":23749,"journal":{"name":"World Automation Congress 2012","volume":"43 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Wearable health monitoring system by using fuzzy logic heart-rate extraction\",\"authors\":\"Tomoya Tanaka, T. Fujita, K. Sonoda, M. Nii, K. Kanda, K. Maenaka, A. C. Kit, S. Okochi, K. Higuchi\",\"doi\":\"10.1080/1931308X.2013.847621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous human monitoring is substantially useful to realize a high QoL (quality of life) society. In the previous work, we fabricated a prototype system for monitoring an electrocardiograph (ECG), heart rate (HR), 3 axes human body acceleration, temperature for human body and human circumstances, simultaneously. These data are transmitted to the host PC and used for analyzing the human activities and conditions such as a heart rate variability (HRV). The HRV that calculated from HR is valuable for recognizing a mental or physical stress of human subjects. In this study, we demonstrate a fuzzy logic HR extraction algorithm on the prototype system to realize an autonomous HRV monitoring system. On-board fuzzy algorithm will reduce the communication traffic and improve an accuracy of the HR extraction. From the implementation result, the error ratio of the HR extraction is improved from 0.9 % to 0.4 %.\",\"PeriodicalId\":23749,\"journal\":{\"name\":\"World Automation Congress 2012\",\"volume\":\"43 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Automation Congress 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1931308X.2013.847621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Automation Congress 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1931308X.2013.847621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

持续的人类监测对于实现高生活质量的社会是非常有用的。在之前的工作中,我们制作了一个原型系统,可以同时监测心电图(ECG)、心率(HR)、三轴人体加速度、人体温度和人体环境。这些数据被传输到主机PC,并用于分析人类活动和情况,如心率变异性(HRV)。由HR计算出的HRV对于识别人类受试者的精神或身体压力是有价值的。在本研究中,我们在原型系统上演示了一种模糊逻辑HR提取算法,以实现自主HRV监测系统。机载模糊算法可以减少通信流量,提高人力资源提取的准确性。从实施结果来看,HR提取的错误率由0.9%提高到0.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wearable health monitoring system by using fuzzy logic heart-rate extraction
Continuous human monitoring is substantially useful to realize a high QoL (quality of life) society. In the previous work, we fabricated a prototype system for monitoring an electrocardiograph (ECG), heart rate (HR), 3 axes human body acceleration, temperature for human body and human circumstances, simultaneously. These data are transmitted to the host PC and used for analyzing the human activities and conditions such as a heart rate variability (HRV). The HRV that calculated from HR is valuable for recognizing a mental or physical stress of human subjects. In this study, we demonstrate a fuzzy logic HR extraction algorithm on the prototype system to realize an autonomous HRV monitoring system. On-board fuzzy algorithm will reduce the communication traffic and improve an accuracy of the HR extraction. From the implementation result, the error ratio of the HR extraction is improved from 0.9 % to 0.4 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信