基于时空相关记忆网络的多目标跟踪

Ming Xin, Wenjie Sun, Kaifang Li, Guancheng Hui
{"title":"基于时空相关记忆网络的多目标跟踪","authors":"Ming Xin, Wenjie Sun, Kaifang Li, Guancheng Hui","doi":"10.1109/cvidliccea56201.2022.9825193","DOIUrl":null,"url":null,"abstract":"Resistance to object appearance deformation and local occlusion is still one of the challenges of multi-object tracking algorithms. Most popular algorithms rely on time-consuming numerical optimization and complex manual design strategies to integrate object appearance information and motion information, so as to alleviate the adverse effects of object appearance deformation and local occlusion on the trajectory updating. This paper proposes a Spatial-Temporal Correlation Memory (STCM) module which can adaptively aggregate useful information from rich historical information in memory. By mining the time dimension information, the STCM module can guide the backbone network to extract the current frame effectively, and adapt to the change in the object’s appearance in the tracking process. Specifically, the STCM module can record the foreground-background information in the history frames and direct the backbone network to focus on the useful information in the current frame. Experiments on the MOT17 data set show that our method outperforms the baseline method and current advanced method in index MOTA and IDFI.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"32 1","pages":"616-619"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Object Tracking with Spatial-Temporal Correlation Memory Networks\",\"authors\":\"Ming Xin, Wenjie Sun, Kaifang Li, Guancheng Hui\",\"doi\":\"10.1109/cvidliccea56201.2022.9825193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resistance to object appearance deformation and local occlusion is still one of the challenges of multi-object tracking algorithms. Most popular algorithms rely on time-consuming numerical optimization and complex manual design strategies to integrate object appearance information and motion information, so as to alleviate the adverse effects of object appearance deformation and local occlusion on the trajectory updating. This paper proposes a Spatial-Temporal Correlation Memory (STCM) module which can adaptively aggregate useful information from rich historical information in memory. By mining the time dimension information, the STCM module can guide the backbone network to extract the current frame effectively, and adapt to the change in the object’s appearance in the tracking process. Specifically, the STCM module can record the foreground-background information in the history frames and direct the backbone network to focus on the useful information in the current frame. Experiments on the MOT17 data set show that our method outperforms the baseline method and current advanced method in index MOTA and IDFI.\",\"PeriodicalId\":23649,\"journal\":{\"name\":\"Vision\",\"volume\":\"32 1\",\"pages\":\"616-619\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvidliccea56201.2022.9825193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvidliccea56201.2022.9825193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

抵抗物体外观变形和局部遮挡仍然是多目标跟踪算法面临的挑战之一。目前流行的算法大多依靠耗时的数值优化和复杂的人工设计策略来整合物体外观信息和运动信息,以减轻物体外观变形和局部遮挡对轨迹更新的不利影响。本文提出了一种时空相关记忆(STCM)模块,该模块可以自适应地从存储器中丰富的历史信息中聚合有用的信息。通过挖掘时间维度信息,STCM模块可以引导骨干网络有效提取当前帧,并适应跟踪过程中目标外观的变化。具体来说,STCM模块可以记录历史帧中的前景和背景信息,并指导骨干网关注当前帧中的有用信息。在MOT17数据集上的实验表明,该方法在索引MOTA和IDFI方面优于基线方法和目前的先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Object Tracking with Spatial-Temporal Correlation Memory Networks
Resistance to object appearance deformation and local occlusion is still one of the challenges of multi-object tracking algorithms. Most popular algorithms rely on time-consuming numerical optimization and complex manual design strategies to integrate object appearance information and motion information, so as to alleviate the adverse effects of object appearance deformation and local occlusion on the trajectory updating. This paper proposes a Spatial-Temporal Correlation Memory (STCM) module which can adaptively aggregate useful information from rich historical information in memory. By mining the time dimension information, the STCM module can guide the backbone network to extract the current frame effectively, and adapt to the change in the object’s appearance in the tracking process. Specifically, the STCM module can record the foreground-background information in the history frames and direct the backbone network to focus on the useful information in the current frame. Experiments on the MOT17 data set show that our method outperforms the baseline method and current advanced method in index MOTA and IDFI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信