M. Bareiss, B. Weiler, D. Kalblein, U. Zschieschang, H. Klauk, G. Scarpa, B. Fabel, P. Lugli, W. Porod
{"title":"功能MIM隧道二极管的纳米转移印刷","authors":"M. Bareiss, B. Weiler, D. Kalblein, U. Zschieschang, H. Klauk, G. Scarpa, B. Fabel, P. Lugli, W. Porod","doi":"10.1109/SNW.2012.6243287","DOIUrl":null,"url":null,"abstract":"Nano diodes show great potential for applications in detectors, communications and energy harvesting. In this work, we focus on nano transfer printing (nTP) to fabricate nm-scale diodes over extensive areas. Using a temperature-enhanced process, several millions of diodes were transfer-printed in one single step. We show the reliable transfer of functioning MIM diodes, which were electrically characterized by conductive Atomic Force Microscopy (c-AFM) measurements. Quantum-mechanical tunneling was determined to be the main conduction mechanism across the metal-oxide-metal junction.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Nano-transfer printing of functioning MIM tunnel diodes\",\"authors\":\"M. Bareiss, B. Weiler, D. Kalblein, U. Zschieschang, H. Klauk, G. Scarpa, B. Fabel, P. Lugli, W. Porod\",\"doi\":\"10.1109/SNW.2012.6243287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nano diodes show great potential for applications in detectors, communications and energy harvesting. In this work, we focus on nano transfer printing (nTP) to fabricate nm-scale diodes over extensive areas. Using a temperature-enhanced process, several millions of diodes were transfer-printed in one single step. We show the reliable transfer of functioning MIM diodes, which were electrically characterized by conductive Atomic Force Microscopy (c-AFM) measurements. Quantum-mechanical tunneling was determined to be the main conduction mechanism across the metal-oxide-metal junction.\",\"PeriodicalId\":6402,\"journal\":{\"name\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNW.2012.6243287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nano-transfer printing of functioning MIM tunnel diodes
Nano diodes show great potential for applications in detectors, communications and energy harvesting. In this work, we focus on nano transfer printing (nTP) to fabricate nm-scale diodes over extensive areas. Using a temperature-enhanced process, several millions of diodes were transfer-printed in one single step. We show the reliable transfer of functioning MIM diodes, which were electrically characterized by conductive Atomic Force Microscopy (c-AFM) measurements. Quantum-mechanical tunneling was determined to be the main conduction mechanism across the metal-oxide-metal junction.