{"title":"OUM -用于独立和嵌入式应用的180nm非易失性存储单元元件技术","authors":"S. Lai, T. Lowrey","doi":"10.1109/IEDM.2001.979636","DOIUrl":null,"url":null,"abstract":"This paper discusses the development status of the memory cell element of OUM (Ovonic Unified Memory) - a chalcogenide-based, phase-change nonvolatile semiconductor memory technology at the 180 nm technology node. The device structure and characterization of the memory element will be reviewed. The key characteristics of the technology will be discussed for ultra-high density, low voltage, high-speed programming, high cycle count, high read speed, and competitive cost structure nonvolatile memory for stand alone and embedded applications. This technology is inherently radiation resistant and is bit byte or word programmable without the requirement of Flash-like block erase. Low voltage and energy operation make OUM an attractive candidate for mobile applications.","PeriodicalId":13825,"journal":{"name":"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)","volume":"68 1","pages":"36.5.1-36.5.4"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"309","resultStr":"{\"title\":\"OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications\",\"authors\":\"S. Lai, T. Lowrey\",\"doi\":\"10.1109/IEDM.2001.979636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the development status of the memory cell element of OUM (Ovonic Unified Memory) - a chalcogenide-based, phase-change nonvolatile semiconductor memory technology at the 180 nm technology node. The device structure and characterization of the memory element will be reviewed. The key characteristics of the technology will be discussed for ultra-high density, low voltage, high-speed programming, high cycle count, high read speed, and competitive cost structure nonvolatile memory for stand alone and embedded applications. This technology is inherently radiation resistant and is bit byte or word programmable without the requirement of Flash-like block erase. Low voltage and energy operation make OUM an attractive candidate for mobile applications.\",\"PeriodicalId\":13825,\"journal\":{\"name\":\"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)\",\"volume\":\"68 1\",\"pages\":\"36.5.1-36.5.4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"309\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2001.979636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2001.979636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications
This paper discusses the development status of the memory cell element of OUM (Ovonic Unified Memory) - a chalcogenide-based, phase-change nonvolatile semiconductor memory technology at the 180 nm technology node. The device structure and characterization of the memory element will be reviewed. The key characteristics of the technology will be discussed for ultra-high density, low voltage, high-speed programming, high cycle count, high read speed, and competitive cost structure nonvolatile memory for stand alone and embedded applications. This technology is inherently radiation resistant and is bit byte or word programmable without the requirement of Flash-like block erase. Low voltage and energy operation make OUM an attractive candidate for mobile applications.