基于可调分组密码的广义Feistel结构

IF 1.7 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Kazuki Nakaya, Tetsu Iwata
{"title":"基于可调分组密码的广义Feistel结构","authors":"Kazuki Nakaya, Tetsu Iwata","doi":"10.46586/tosc.v2022.i4.24-91","DOIUrl":null,"url":null,"abstract":"A generalized Feistel structure (GFS) is a classical approach to construct a block cipher from pseudorandom functions (PRFs). Coron et al. at TCC 2010 instantiated a Feistel structure with a tweakable block cipher (TBC), and presented its provable security treatment. GFSs can naturally be instantiated with TBCs, and among several types of GFSs, the provable security result of TBC-based unbalanced GFSs was presented. TBC-based counterparts of the most basic types of GFSs , namely, type-1, type-2, and type-3 GFSs, can naturally be formalized, and the provable security result of these structures is open. In this paper, we present such formalization and show their provable security treatment. We use a TBC of n-bit blocks and n-bit tweaks, and we identify the number of rounds needed to achieve birthday-bound security and beyond-birthday-bound security (with respect to n). The n-bit security can be achieved with a finite number of rounds, in contrast to the case of classical PRF-based GFSs. Our proofs use Patarin’s coefficient-H technique, and it turns out deriving a collision probability of various internal variables is nontrivial. In order to complete the proof, we introduce an approach to first compute a collision probability of one specific plaintext difference (or a ciphertext difference), and then prove that the case gives the maximum collision probability. We fully verify the correctness of our security bounds for a class of parameters by experimentally deriving upper bounds on the collision probability of internal variables. We also analyse the optimality of our results with respect to the number of rounds and the attack complexity.","PeriodicalId":37077,"journal":{"name":"IACR Transactions on Symmetric Cryptology","volume":"107 1","pages":"24-91"},"PeriodicalIF":1.7000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized Feistel Structures Based on Tweakable Block Ciphers\",\"authors\":\"Kazuki Nakaya, Tetsu Iwata\",\"doi\":\"10.46586/tosc.v2022.i4.24-91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalized Feistel structure (GFS) is a classical approach to construct a block cipher from pseudorandom functions (PRFs). Coron et al. at TCC 2010 instantiated a Feistel structure with a tweakable block cipher (TBC), and presented its provable security treatment. GFSs can naturally be instantiated with TBCs, and among several types of GFSs, the provable security result of TBC-based unbalanced GFSs was presented. TBC-based counterparts of the most basic types of GFSs , namely, type-1, type-2, and type-3 GFSs, can naturally be formalized, and the provable security result of these structures is open. In this paper, we present such formalization and show their provable security treatment. We use a TBC of n-bit blocks and n-bit tweaks, and we identify the number of rounds needed to achieve birthday-bound security and beyond-birthday-bound security (with respect to n). The n-bit security can be achieved with a finite number of rounds, in contrast to the case of classical PRF-based GFSs. Our proofs use Patarin’s coefficient-H technique, and it turns out deriving a collision probability of various internal variables is nontrivial. In order to complete the proof, we introduce an approach to first compute a collision probability of one specific plaintext difference (or a ciphertext difference), and then prove that the case gives the maximum collision probability. We fully verify the correctness of our security bounds for a class of parameters by experimentally deriving upper bounds on the collision probability of internal variables. We also analyse the optimality of our results with respect to the number of rounds and the attack complexity.\",\"PeriodicalId\":37077,\"journal\":{\"name\":\"IACR Transactions on Symmetric Cryptology\",\"volume\":\"107 1\",\"pages\":\"24-91\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Transactions on Symmetric Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46586/tosc.v2022.i4.24-91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Transactions on Symmetric Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46586/tosc.v2022.i4.24-91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

广义Feistel结构(GFS)是利用伪随机函数构造分组密码的一种经典方法。Coron等人在TCC 2010上实例化了一个带有可调整分组密码(TBC)的Feistel结构,并提出了其可证明的安全处理方法。gfs可以自然地用tbc实例化,在几种类型的gfs中,给出了基于tbc的非平衡gfs的可证明安全性结果。基于tbc的gfs最基本类型,即type-1、type-2和type-3 gfs的对应物,自然可以形式化,并且这些结构的可证明安全性结果是开放的。本文给出了这种形式化,并给出了其可证明的安全处理。我们使用n位块和n位调整的TBC,并确定实现生日绑定安全性和超越生日绑定安全性(相对于n)所需的轮数。与经典的基于prf的gfs相比,n位安全性可以通过有限的轮数来实现。我们的证明使用了Patarin的系数- h技术,结果证明,推导各种内部变量的碰撞概率是非平凡的。为了完成证明,我们引入了一种方法,首先计算一个特定明文差异(或密文差异)的碰撞概率,然后证明这种情况给出了最大的碰撞概率。通过实验推导出内部变量碰撞概率的上界,充分验证了一类参数安全界的正确性。我们还分析了关于回合数和攻击复杂性的结果的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Feistel Structures Based on Tweakable Block Ciphers
A generalized Feistel structure (GFS) is a classical approach to construct a block cipher from pseudorandom functions (PRFs). Coron et al. at TCC 2010 instantiated a Feistel structure with a tweakable block cipher (TBC), and presented its provable security treatment. GFSs can naturally be instantiated with TBCs, and among several types of GFSs, the provable security result of TBC-based unbalanced GFSs was presented. TBC-based counterparts of the most basic types of GFSs , namely, type-1, type-2, and type-3 GFSs, can naturally be formalized, and the provable security result of these structures is open. In this paper, we present such formalization and show their provable security treatment. We use a TBC of n-bit blocks and n-bit tweaks, and we identify the number of rounds needed to achieve birthday-bound security and beyond-birthday-bound security (with respect to n). The n-bit security can be achieved with a finite number of rounds, in contrast to the case of classical PRF-based GFSs. Our proofs use Patarin’s coefficient-H technique, and it turns out deriving a collision probability of various internal variables is nontrivial. In order to complete the proof, we introduce an approach to first compute a collision probability of one specific plaintext difference (or a ciphertext difference), and then prove that the case gives the maximum collision probability. We fully verify the correctness of our security bounds for a class of parameters by experimentally deriving upper bounds on the collision probability of internal variables. We also analyse the optimality of our results with respect to the number of rounds and the attack complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IACR Transactions on Symmetric Cryptology
IACR Transactions on Symmetric Cryptology Mathematics-Applied Mathematics
CiteScore
5.50
自引率
22.90%
发文量
37
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信