混沌复杂演化全局优化技术在桁架结构设计中的应用

Samer M. Barakat, H. Ibrahim
{"title":"混沌复杂演化全局优化技术在桁架结构设计中的应用","authors":"Samer M. Barakat, H. Ibrahim","doi":"10.1109/ICMSAO.2011.5775590","DOIUrl":null,"url":null,"abstract":"This paper presents evolutionary-based optimization procedure for designing truss structures. The Shuffled Complex Evolution optimizer (SCEO) is used for solving the nonlinear constrained optimization problems. In this optimum design formulation, the objective function is the material weight of the truss; the design variables are the cross-sections of the truss members; the constraints are the stresses in members and the displacements of the joints. The constraints were handled using non-stationary dynamically modified penalty functions. Two classical truss optimization examples are presented herein to demonstrate the efficiency of the SCE algorithm. The two test problems include a 17-bar planar truss subjected to a single load condition and a 25-bar space truss subjected to two load conditions. The result shows that the SCEO method is very efficient in finding the best discovered optimal solutions, which are better, or at the same level of the results of other structural optimization methods.","PeriodicalId":6383,"journal":{"name":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","volume":"53 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of shuffled complex evolution global optimization technique in the design of truss structures\",\"authors\":\"Samer M. Barakat, H. Ibrahim\",\"doi\":\"10.1109/ICMSAO.2011.5775590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents evolutionary-based optimization procedure for designing truss structures. The Shuffled Complex Evolution optimizer (SCEO) is used for solving the nonlinear constrained optimization problems. In this optimum design formulation, the objective function is the material weight of the truss; the design variables are the cross-sections of the truss members; the constraints are the stresses in members and the displacements of the joints. The constraints were handled using non-stationary dynamically modified penalty functions. Two classical truss optimization examples are presented herein to demonstrate the efficiency of the SCE algorithm. The two test problems include a 17-bar planar truss subjected to a single load condition and a 25-bar space truss subjected to two load conditions. The result shows that the SCEO method is very efficient in finding the best discovered optimal solutions, which are better, or at the same level of the results of other structural optimization methods.\",\"PeriodicalId\":6383,\"journal\":{\"name\":\"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization\",\"volume\":\"53 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMSAO.2011.5775590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSAO.2011.5775590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了基于演化的桁架结构优化设计方法。将混沌复杂进化优化器(SCEO)用于求解非线性约束优化问题。在此优化设计公式中,目标函数为桁架材料自重;设计变量为桁架构件的截面;约束条件是构件的应力和节点的位移。使用非平稳的动态修正惩罚函数处理约束。文中给出了两个经典桁架优化实例,验证了该算法的有效性。这两个测试问题包括一个17巴平面桁架在单一荷载条件下和一个25巴空间桁架在两个荷载条件下。结果表明,SCEO方法在寻找最优解方面是非常有效的,其结果优于或处于其他结构优化方法的同一水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of shuffled complex evolution global optimization technique in the design of truss structures
This paper presents evolutionary-based optimization procedure for designing truss structures. The Shuffled Complex Evolution optimizer (SCEO) is used for solving the nonlinear constrained optimization problems. In this optimum design formulation, the objective function is the material weight of the truss; the design variables are the cross-sections of the truss members; the constraints are the stresses in members and the displacements of the joints. The constraints were handled using non-stationary dynamically modified penalty functions. Two classical truss optimization examples are presented herein to demonstrate the efficiency of the SCE algorithm. The two test problems include a 17-bar planar truss subjected to a single load condition and a 25-bar space truss subjected to two load conditions. The result shows that the SCEO method is very efficient in finding the best discovered optimal solutions, which are better, or at the same level of the results of other structural optimization methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信